205 research outputs found

    A selective role for neuronal activity regulated pentraxin in the processing of sensory-specific incentive value

    Get PDF
    Neuronal activity regulated pentraxin (Narp) is a secreted neuronal product which clusters AMPA receptors and regulates excitatory synaptogenesis. Although Narp is selectively enriched in brain, its role in behavior is not known. As Narp is expressed prominently in limbic regions, we examined whether Narp deletion affects performance on tasks used to assess motivational consequences of food-rewarded learning. Narp knock-out (KO) mice were unimpaired in learning simple pavlovian discriminations, instrumental lever pressing, and in acquisition of at least two aspects of pavlovian incentive learning, conditioned reinforcement and pavlovian-instrumental transfer. In contrast, Narp deletion resulted in a substantial deficit in the ability to use specific outcome expectancies to modulate instrumental performance in a devaluation task. In this task, mice were trained to respond on two levers for two different rewards. After training, mice were prefed with one of the two rewards, devaluing it. Responding on both levers was then assessed in extinction. Whereas control mice showed a significant preference in responding on the lever associated with the nondevalued reward, Narp KO mice responded equally on both levers, failing to suppress responding on the lever associated with the devalued reward. Both groups consumed more of the nondevalued reward in a subsequent choice test, indicating Narp KO mice could distinguish between the rewards themselves. These data suggest Narp has a selective role in processing sensory-specific information necessary for appropriate devaluation performance, but not in general motivational effects of reward-predictive cues on performance

    Concentration and Subclass Distribution of Anti-ADAMTS13 IgG Autoantibodies in Different Stages of Acquired Idiopathic Thrombotic Thrombocytopenic Purpura

    Get PDF
    Background: The acquired form of idiopathic thrombotic thrombocytopenic purpura (TTP) is an autoimmune disease, in which the underlying deficiency of the ADAMTS13 protease is caused by autoantibodies, predominantly of the IgG isotype. Certain HLADR-DQ haplotypes were associated with the risk of developing TTP. Objectives: To investigate the development of the ADAMTS13-specific antibody response during the course of the disease, we analyzed the concentration, subclass distribution, and inhibitory potential of anti-ADAMTS13 IgG autoantibodies in samples of TIP patients drawn during the first acute phase, in remission, and during relapse. Additionally, we compared the anti-ADAMTS13 IgG levels between patients carrying and not carrying risk and protective HLA-DR-DQ haplotypes. Patients and Methods: We determined the anti-ADAMTS13 IgG concentration and subclass distribution in 101 antibody-positive samples of 81 acquired TIP patients by ELISA methods. The presence and semi-quantitative amount of anti-ADAMTS13 inhibitors were determined in 97 of 100 deficient samples, and the specific inhibitory potential of anti-ADAMTS13 autoantibodies was determined in 49 selected samples, by mixing ADAMTS13-activity assays. HLA-DR-DQ typing and haplotype prediction were performed in 70 of the above patients. Results: We found that IgG1 and IgG4 were the predominant subclasses, present in almost all samples. While IgG1 was the dominant subclass in almost half of the samples taken during the first acute episode, IgG4 was dominant in all samples taken during or following a relapse. The inhibitory potential of the samples correlated with levels of the IgG4 subclass. Anti-ADAMTS13 antibodies of IgG4-dominant samples had higher specific inhibitory potentials than IgG1-dominant samples, independently of disease stage. Interestingly, we found that patients carrying the protective DR7-DQ2 and DR13-DQ6 haplotypes had higher anti-ADAMTS13 IgG levels. Conclusion: Our results indicate that IgG4 becomes the dominant subtype at some point of the disease course, apparently before the first relapse, parallel to the increase in inhibitory potential of the anti-ADAMTS13 autoantibodies. Furthermore, we found an association between the genetic background and the antibody response in TTP

    Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies

    Get PDF
    Neuronal pentraxin II (NPTX2) is the most highly upregulated gene in the Parkinsonian substantia nigra based on our whole genome expression profiling results. We show here that it is a novel component of Lewy bodies and Lewy neurites in sporadic Parkinson’s disease (PD). NPTX2 is also known as the neuronal activity-regulated protein (Narp), which is secreted and involved in long-term neuronal plasticity. Narp further regulates AMPA receptors which have been found to mediate highly selective non-apoptotic cell death of dopaminergic neurons. NPTX2/Narp is found in close association with alpha-synuclein aggregates in both substantia nigra and cerebral cortex in PD but unlike alpha-synuclein gene expression, which is down-regulated in the Parkinsonian nigra, NPTX2 could represent a driver of the disease process. In view of its profound (>800%) upregulation and its established role in synaptic plasticity as well as dopaminergic nerve cell death, NPTX2 is a very interesting novel player which is likely to be involved in the pathway dysregulation which underlies PD

    First-line therapy in atypical hemolytic uremic syndrome: consideration on infants with a poor prognosis.

    Get PDF
    BackgroundAtypical hemolytic uremic syndrome (aHUS) is a rare and heterogeneous disorder. The first line treatment of aHUS is plasma therapy, but in the past few years, the recommendations have changed greatly with the advent of eculizumab, a humanized monoclonal anti C5-antibody. Although recent recommendations suggest using it as a primary treatment for aHUS, important questions have arisen about the necessity of immediate use of eculizumab in all cases. We aimed to draw attention to a specific subgroup of aHUS patients with rapid disease progression and high mortality, in whom plasma therapy may not be feasible.MethodsWe present three pediatric patients of acute complement-mediated HUS with a fatal outcome. Classical and alternative complement pathway activity, levels of complement factors C3, C4, H, B and I, as well as of anti-factor H autoantibody and of ADAMTS13 activity were determined. The coding regions of CFH, CFI, CD46, THBD, CFB and C3 genes were sequenced and the copy number of CFI, CD46, CFH and related genes were analyzed.ResultsWe found severe activation and consumption of complement components in these patients, furthermore, in one patient we identified a previously not reported mutation in CFH (Ser722Stop), supporting the diagnosis of complement-mediated HUS. These patients were not responsive to the FFP therapy, and all cases had fatal outcome.ConclusionTaking the heterogeneity and the variable prognosis of atypical HUS into account, we suggest that the immediate use of eculizumab should be considered as first-line therapy in certain small children with complement dysregulation

    Plasma Dynamics

    Get PDF
    Contains reports on two research projects.National Science Foundation under Grant G-9330WADD Contract AF33(616)-7624 with Flight Accessories Laboratory, Wright-Patterson Air Force Base, OhioAtomic Energy Commission under Contract AT(30-1)-1842Air Force Command and Control Development Division under Contract AF19(604)-599
    • 

    corecore