660 research outputs found

    Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels

    Full text link
    Thermal analysis of water in reinforce hydrogels of plasma-polymerised poly(2-hydroxyethyl acrylate) (plPHEA) grafted onto macroporous poly(methyl methacrylate) (PMMA) are explained in a simple thermodynamic framework based on the transition diagram. Water in bulk PHEA was also analysed for comparison with plPHEA. These two hydrophilic polymers were prepared with a broad range of water mass fractions from 0.05 to 0.72. Thermal transition diagrams of water/PHEA and water/plPHEA were determined showing less undercooling of water crystallisation in plPHEA than in PHEA. Kinetics of water crystallisation for high and low water contents were studied in both hydrophilic systems following several thermal treatments. Water crystallises much faster in plPHEA than in PHEA for high water contents. For low water contents, crystallisation becomes possible holding at 30 degrees C for some time due to water segregation in both PHEA systems. However, much less water is segregated from the water/plPHEA mixture due to the influence of the hydrophobic component.This work was supported by a Marie Curie Host Fellowship and by the Spanish Science and Technology Ministry through the MAT2001-2678-C02-01 and MAT2002-04239-C03-03 projects. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Serrano Aroca, Á.; Monleón Pradas, M.; Gómez Ribelles, JL.; Rault, J. (2015). Thermal analysis of water in reinforced plasma-polymerised poly(2-hydroxyethyl acrylate) hydrogels. European Polymer Journal. 72:523-534. https://doi.org/10.1016/j.eurpolymj.2015.05.032S5235347

    Time-resolved PhotoEmission Spectroscopy on a Metal/Ferroelectric Heterostructure

    Full text link
    In thin film ferroelectric capacitor the chemical and electronic structure of the electrode/FE interface can play a crucial role in determining the kinetics of polarization switching. We investigate the electronic structure of a Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy. The chemical, electronic and depth sensitivity of core level photoemission is used to probe the transient response of different parts of the upper electrode/ferroelectric interface to voltage pulse induced polarization reversal. The linear response of the electronic structure agrees quantitatively with a simple RC circuit model. The non-linear response due to the polarization switch is demonstrated by the time-resolved response of the characteristic core levels of the electrode and the ferroelectric. Adjustment of the RC circuit model allows a first estimation of the Pt/BTO interface capacitance. The experiment shows the interface capacitance is at least 100 times higher than the bulk capacitance of the BTO film, in qualitative agreement with theoretical predictions from the literature.Comment: 7 pages, 10 figures. Submitted to Phys. Rev.

    Interface Electronic Structure in a Metal/Ferroelectric Heterostructure under Applied Bias

    Full text link
    The effective barrier height between an electrode and a ferroelectric (FE) depends on both macroscopic electrical properties and microscopic chemical and electronic structure. The behavior of a prototypical electrode/FE/electrode structure, Pt/BaTiO3/Nb-doped SrTiO3, under in-situ bias voltage is investigated using X-Ray Photoelectron Spectroscopy. The full band alignment is measured and is supported by transport measurements. Barrier heights depend on interface chemistry and on the FE polarization. A differential response of the core levels to applied bias as a function of the polarization state is observed, consistent with Callen charge variations near the interface.Comment: 9 pages, 8 figures. Submitted to Phys. Rev.
    corecore