160 research outputs found

    Disaccahrides-based cryo-formulant effect on modulating phospho/mitochondrial lipids and biological profiles of human leukaemia cells

    Get PDF
    BACKGROUND/AIMS: The use of novel cryo-additive agents to increase cell viability post-cryopreservation is paramount to improve future cell based-therapy treatments. We aimed to establish the Human Leukemia (HL-60) cells lipidomic and biological patterns when cryo-preserved in DMSO alone and with 300 µM Nigerose (Nig), 200 µM Salidroside (Sal) or a combination of Nig (150 µM) and Sal (100 µM). METHODS: HL-60 cells were pre-incubated with Nig/Sal prior, during and post cryopreservation, and subjected to global lipidomic analysis. Malondialdeyhde (MDA), released lactate dehydrogenase (LDH) and reactive oxygen scavenger (ROS) measurements were also carried out to evaluate levels of lipid peroxidation and cytotoxicity. RESULTS: Cryopreserving HL-60 cells in DMSO with Nig and Sal provided optimal protection against unsaturated fatty acid oxidation. Post-thaw, cellular phospholipids and mitochondrial cardiolipins were increased by Nig/Sal as the ratio of unsaturated to saturated fatty acids 2.08 +/- 0.03 and 0.95 +/- 0.09 folds respectively in comparison to cells cryopreserved in DMSO alone (0.49 +/- 0.05 and 0.86 +/- 0.10 folds). HL-60 lipid peroxidation levels in the presence of DMSO + Nig and Sal combined were significantly reduced relative to pre-cryopreservation levels (10.91 +/- 2.13 nmole) compared to DMSO (17.1 +/- 3.96 nmole). DMSO + Nig/Sal combined also significantly reduced cell cytotoxicity post-thaw (0.0128 +/- 0.00182 mU/mL) in comparison to DMSO (0.0164 +/- 0.00126 mU/mL). The combination of Nig/Sal also reduced significantly ROS levels to the levels of prior cryopreservation of HL-60. CONCLUSION: Overall, the establishment of the cryopreserved HL-60 cells lipidomic and the corresponding biological profiles showed an improved cryo-formulation in the presence of DMSO with the Nig/Sal combination by protecting the, mitochondrial inner membrane, unsaturated fatty acid components (i. e. Cardiolipins) and total phospholipids

    Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

    Get PDF
    Background: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo-/-) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods. Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo-/- mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results: Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo-/- mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MS E profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions: Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts

    Investigating structure, magneto-electronic, and thermoelectric properties of the new d0 quaternary Heusler compounds RbCaCZ (Z = P, As, Sb) from first principle calculations

    Get PDF
    818-824The ab initio calculations based on the density functional theory (DFT) using the self-consistent full potential linearized augmented plane wave (FPLAPW) method were performed to explore the electronic structures, magnetic and thermoelectric properties of quaternary alloys RbCaCZ (Z = P, As, Sb) with quaternary Heusler structure. Results showed that FM-Y3 is the most favorable atomic arrangement. All the compounds are found to be half-metallic ferromagnetic materials with an integer magnetic moment of 2.00 μB, which predominantly derives from the strong spin polarization of p channels of C hybridized with Z elements. The predicted minority (half-metallic) band gaps were found to be 1.86 (0.87), 1.72 (0.78), and 1.78 (0.71) eV for Z = P, As, and Sb, respectively. Thermoelectric properties of the RbCaCZ (Z = P, As, Sb) materials are additionally computed over an extensive variety of temperature and it is discovered that all compounds demonstrates higher figure of merit. The half-metallic structures of these compounds with large band gaps and adequate Seebeck coefficients mean that they are suitable for use in spintronic and thermoelectric device applications

    LC-MS PHENOLIC COMPOSITION CHANGES AND ANTIOXIDANT CAPACITIES OF THE SAHARAN TREE ARGANIA SPINOSA LEAVES UNDER SALNITY

    Get PDF
    Adaptation of many plant species to hostile environmental conditions suggest the presence of powerful antioxidative constituents in their tissues such as phenolic compounds. Many works on antioxidant activity of the Moroccan argan oil have been carried out. However, it is the first time that salt impact on Algerian arganleaves is assessed. The main objective of this work was to study the soil salinity impact on phenolic content and composition, and the antioxidant activities of the argan leaves collected from three point in the same site of Tindouf region (Algeria) characterized by a gradient of salt concentration (Lightly Salt Tindouf, Salt Tindouf and Very Salt Tindouf). Variability of phenolic contents, antioxidant and free radical-scavenging activities of the argan leaves as function of salt soil concentration were evaluated. Identification was done by LC-MS system. Regarding phenolic contents (total polyphenol, flavonoid and condensed tannin), the Salt Tindouf leaves displayed the highest amounts (total polyphenol = 77.28 mg GAE/g DW). Moreover, the same tendency was observed for antioxidant activities, for instance, total antioxidant activity of leaves from Salt Tindouf was the highest (83.6 mg GAE/g DW). In addition, leaves from Salt Tindouf displayed the highest scavenging activity against DPPH radical (IC50 = 6.5 μg/ml) as compared to the two others points. These results were also confirmed by LC-MS analyses. Leaves synthesize more compounds with very important biological activities under salinity which allow them to be valorized in different fields, such as pharmacology and agro-food industries

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset

    Get PDF
    Recent research efforts have progressively shifted towards preventative psychiatry and prognostic identification of individuals before disease onset. We describe the development of a serum biomarker test for the identification of individuals at risk of developing schizophrenia based on multiplex immunoassay profiling analysis of 957 serum samples. First, we conducted a meta-analysis of five independent cohorts of 127 first-onset drug-naive schizophrenia patients and 204 controls. Using least absolute shrinkage and selection operator regression, we identified an optimal panel of 26 biomarkers that best discriminated patients and controls. Next, we successfully validated this biomarker panel using two independent validation cohorts of 93 patients and 88 controls, which yielded an area under the curve (AUC) of 0.97 (0.95-1.00) for schizophrenia detection. Finally, we tested its predictive performance for identifying patients before onset of psychosis using two cohorts of 445 pre-onset or at-risk individuals. The predictive performance achieved by the panel was excellent for identifying USA military personnel (AUC: 0.90 (0.86-0.95)) and help-seeking prodromal individuals (AUC: 0.82 (0.71-0.93)) who developed schizophrenia up to 2 years after baseline sampling. The performance increased further using the latter cohort following the incorporation of CAARMS (Comprehensive Assessment of At-Risk Mental State) positive subscale symptom scores into the model (AUC: 0.90 (0.82-0.98)). The current findings may represent the first successful step towards a test that could address the clinical need for early intervention in psychiatry. Further developments of a combined molecular/symptom-based test will aid clinicians in the identification of vulnerable patients early in the disease process, allowing more effective therapeutic intervention before overt disease onset

    The Establishment of a Primary Culture System of Proximal Tubule Segments Using Specific Markers from Normal Mouse Kidneys

    Get PDF
    The proximal tubule contains the highest expression of angiotensinogen mRNA and protein within the kidney and plays a vital role in the renal renin-angiotensin system. To study the regulation of angiotensinogen expression in the kidney in more detail, the proximal tubule needs to be accurately isolated from the rest of the nephron and separated into its three segments. The purpose of this study was to design a novel protocol using specific markers for the separation of proximal tubule cells into the three proximal tubule segments and to determine angiotensinogen expression in each segment. Kidneys were removed from C57BL/6J mice. The proximal tubules were aspirated from region of a Percoll gradient solution of the appropriate density. The proximal tubule was then separated into its three segments using segment-specific membrane proteins, after which each segment was characterized by a different specific marker (sodium-glucose transporter 2 for Segment 1; carbonic anhydrase IV for Segment 2; ecto-adenosine triphosphatase for Segment 3). The isolation of proximal tubules into three segments was successful, and angiotensinogen mRNA in Segment 2 and 3 and angiotensinogen protein in all three segments were confirmed. This protocol will be helpful for future studies of the detailed mechanisms of the intrarenal renin-angiotensin system

    Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    Get PDF
    Background: The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods. Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MS§ssup§E§esup§). The main objective was to identify sex-specific serum protein changes associated with AS. Results: Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MS§ssup§E§esup§ profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion: Taken together, the serum multiplex immunoassay and shotgun LC- MS§ssup§E§esup§ profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches

    Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function

    Get PDF
    There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology
    corecore