6 research outputs found

    Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis

    Get PDF
    Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion

    Slow Disease Progression in a C57BL/6 Pten-Deficient Mouse Model of Prostate Cancer

    No full text
    Prostate-specific deletion of Pten in mice has been reported to recapitulate histological progression of human prostate cancer. To improve on this model, we introduced the conditional ROSA26 luciferase reporter allele to monitor prostate cancer progression via bioluminescence imaging and extensively backcrossed mice onto the albino C57BL/6 genetic background to address variability in tumor kinetics and to enhance imaging sensitivity. Bioluminescence signal increased rapidly in Ptenp−/− mice from 3 to 11 weeks, but was much slower from 11 to 52 weeks. Changes in bioluminescence signal were correlated with epithelial proliferation. Magnetic resonance imaging revealed progressive increases in prostate volume, which were attributed to excessive fluid retention in the anterior prostate and to expansion of the stroma. Development of invasive prostate cancer in 52-week-old Ptenp−/− mice was rare, indicating that disease progression was slowed relative to that in previous reports. Tumors in these mice exhibited a spontaneous inflammatory phenotype and were rapidly infiltrated by myeloid-derived suppressor cells. Although Ptenp−/− tumors responded to androgen withdrawal, they failed to exhibit relapsed growth for up to 1 year. Taken together, these data identify a mild prostate cancer phenotype in C57BL/6 prostate-specific Pten-deficient mice, reflecting effects of the C57BL/6 genetic background on cancer progression. This model provides a platform for noninvasive assessment of how genetic and environmental risk factors may affect disease progression
    corecore