5,040 research outputs found

    Feeding the fire: Tracing the mass-loading of 10^7 K galactic outflows with O VI absorption

    Get PDF
    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z~2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km/s the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Full text link
    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS\,J2222++2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0\tau_{\rm AB} = 47.7 \pm 6.0 days (95\% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24\tau_{\rm CA} = 722 \pm 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75\% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.Comment: 9 pages, 9 figures, Version accepted for publication in Ap

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    A paediatric telecardiology service for district hospitals in south-east England: an observational study.

    Get PDF
    The attached article is a Publisher version of the final published version which may be accessed at the link below. Copyright © 2010 BMJ Publishing Group Ltd & Royal College of Paediatrics and Child Health. All rights reservedOBJECTIVES: To compare caseloads of new patients assessed by paediatric cardiologists face-to-face or during teleconferences, and assess NHS costs for the alternative referral arrangements. DESIGN: Prospective cohort study over 15 months. SETTING: Four district hospitals in south-east England and a London paediatric cardiology centre. PATIENTS: Babies and children. INTERVENTION: A telecardiology service introduced alongside outreach clinics. MEASUREMENTS: Clinical outcomes and mean NHS costs per patient. RESULTS: 266 new patients were studied: 75 had teleconsultations (19 of 42 newborns and 56 of 224 infants and children). Teleconsultation patients generally were younger (49% being under 1 year compared with 32% seen personally (p = 0.025)) and their symptoms were not as severe. A cardiac intervention was undertaken immediately or planned for five telemedicine patients (7%) and 30 conventional patients (16%). However, similar proportions of patients were discharged after being assessed (32% telemedicine and 39% conventional). During scheduled teleconferences the mean duration of time per patient in sessions involving real-time echocardiography was 14.4 min, and 8.5 min in sessions where pre-recorded videos were transmitted. Mean cost comparisons for telemedicine and face-to-face patients over 14-day and 6-month follow-up showed the telecardiology service to be cost-neutral for the three hospitals with infrequently-held outreach clinics (1519 UK pounds vs 1724 UK pounds respectively after 14 days). CONCLUSION: Paediatric cardiology centres with small cadres of specialists are under pressure to cope with ever-expanding caseloads of new patients with suspected anomalies. Innovative use of telecardiology alongside conventional outreach services should suitably, and economically, enhance access to these specialists.The Department of Health and the Charitable Funds Committee of the Royal Brompton and Harefield NHS Trust funded the project

    Neutrophils in innate host defense against Staphylococcus aureus infections

    Get PDF
    Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function

    Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations

    Full text link
    We infer the properties of massive star populations using the far-ultraviolet stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and 19 at z~2 from the Megasaura sample. We fit each stellar continuum with a linear combination of up to 50 single age and single metallicity Starburst99 models. From these fits, we derive light-weighted ages and metallicities, which agree with stellar wind and photospheric spectral features, and infer the spectral shapes and strengths of the ionizing continua. Inferred light-weighted stellar metallicities span 0.05-1.5 Z_\odot and are similar to the measured nebular metallicities. We quantify the ionizing continua using the ratio of the ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate the evolution of this ratio with stellar age and metallicity using theoretical single burst models. These single burst models only match the inferred ionizing continua of half of the sample, while the other half are described by a mixture of stellar ages. Mixed age populations produce stronger and harder ionizing spectra than continuous star formation histories, but, contrary to previous studies that assume constant star formation, have similar stellar and nebular metallicities. Stellar population age and metallicity affect the far-UV continua in different and distinguishable ways; assuming a constant star formation history diminishes the diagnostic power. Finally, we provide simple prescriptions to determine the ionizing photon production efficiency (ξion\xi_{ion}) from the stellar population properties. ξion\xi_{ion} has a range of log(ξion)=24.425.7\xi_{ion})=24.4-25.7 Hz erg1^{-1} that depends on stellar age, metallicity, star formation history, and contributions from binary star evolution. These stellar population properties must be observationally determined to determine the number of ionizing photons generated by massive stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the referee's comments. Comments encourage

    A Multiwavelength Study on the Fate of Ionizing Radiation in Local Starbursts

    Get PDF
    The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions of a sample of local star-forming galaxies, containing thirteen local starburst galaxies and ten of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs is much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24um, 70um, and 160um MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the GALEX bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small H-alpha fractions of the diffuse, warm ionized medium in starburst galaxies are apparently due to temporarily boosted H-alpha luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.Comment: 10 pages, 8 figures, accepted to ApJ 10/11/1

    Accurately predicting the escape fraction of ionizing photons using restframe ultraviolet absorption lines

    Get PDF
    The fraction of ionizing photons that escape high-redshift galaxies sensitively determines whether galaxies reionized the early universe. However, this escape fraction cannot be measured from high-redshift galaxies because the opacity of the intergalactic medium is large at high redshifts. Without methods to indirectly measure the escape fraction of high-redshift galaxies, it is unlikely that we will know what reionized the universe. Here, we analyze the far-ultraviolet (UV) H I (Lyman series) and low-ionization metal absorption lines of nine low-redshift, confirmed Lyman continuum emitting galaxies. We use the H I covering fractions, column densities, and dust attenuations measured in a companion paper to predict the escape fraction of ionizing photons. We find good agreement between the predicted and observed Lyman continuum escape fractions (within 1.4σ1.4\sigma) using both the H I and ISM absorption lines. The ionizing photons escape through holes in the H I, but we show that dust attenuation reduces the fraction of photons that escape galaxies. This means that the average high-redshift galaxy likely emits more ionizing photons than low-redshift galaxies. Two other indirect methods accurately predict the escape fractions: the Lyα\alpha escape fraction and the optical [O III]/[O II] flux ratio. We use these indirect methods to predict the escape fraction of a sample of 21 galaxies with rest-frame UV spectra but without Lyman continuum observations. Many of these galaxies have low escape fractions (fesc1f_{\rm esc} \le 1\%), but 11 have escape fractions >1>1\%. The methods presented here will measure the escape fractions of high-redshift galaxies, enabling future telescopes to determine whether star-forming galaxies reionized the early universe.Comment: Accepted for publication in A&A. 12 pages, 5 figure
    corecore