13,887 research outputs found
Simulation of Chua's Circuit by Means of Interval Analysis
The Chua's circuit is a paradigm for nonlinear scientific studies. It is
usually simulated by means of numerical methods under IEEE 754-2008 standard.
Although the error propagation problem is well known, little attention has been
given to the relationship between this error and inequalities presented in
Chua's circuit model. Taking the average of round mode towards and
, we showed a qualitative change on the dynamics of Chua's circuit.Comment: 6th International Conference on Nonlinear Science and Complexity -
S\~ao Jos\'e dos Campos, 2016, p. 1-
Epidemic threshold in structured scale-free networks
We analyze the spreading of viruses in scale-free networks with high
clustering and degree correlations, as found in the Internet graph. For the
Suscetible-Infected-Susceptible model of epidemics the prevalence undergoes a
phase transition at a finite threshold of the transmission probability.
Comparing with the absence of a finite threshold in networks with purely random
wiring, our result suggests that high clustering and degree correlations
protect scale-free networks against the spreading of viruses. We introduce and
verify a quantitative description of the epidemic threshold based on the
connectivity of the neighborhoods of the hubs.Comment: 4 pages, 4 figure
Higher-Derivative Two-Dimensional Massive Fermion Theories
We consider the canonical quantization of a generalized two-dimensional
massive fermion theory containing higher odd-order derivatives. The
requirements of Lorentz invariance, hermiticity of the Hamiltonian and absence
of tachyon excitations suffice to fix the mass term, which contains a
derivative coupling. We show that the basic quantum excitations of a
higher-derivative theory of order 2N+1 consist of a physical usual massive
fermion, quantized with positive metric, plus 2N unphysical massless fermions,
quantized with opposite metrics. The positive metric Hilbert subspace, which is
isomorphic to the space of states of a massive free fermion theory, is selected
by a subsidiary-like condition. Employing the standard bosonization scheme, the
equivalent boson theory is derived. The results obtained are used as a
guideline to discuss the solution of a theory including a current-current
interaction.Comment: 23 pages, Late
Ice Age Epochs and the Sun's Path Through the Galaxy
We present a calculation of the Sun's motion through the Milky Way Galaxy
over the last 500 million years. The integration is based upon estimates of the
Sun's current position and speed from measurements with Hipparcos and upon a
realistic model for the Galactic gravitational potential. We estimate the times
of the Sun's past spiral arm crossings for a range in assumed values of the
spiral pattern angular speed. We find that for a difference between the mean
solar and pattern speed of Omega_Sun - Omega_p = 11.9 +/- 0.7 km/s/kpc the Sun
has traversed four spiral arms at times that appear to correspond well with
long duration cold periods on Earth. This supports the idea that extended
exposure to the higher cosmic ray flux associated with spiral arms can lead to
increased cloud cover and long ice age epochs on Earth.Comment: 14 pages, 3 figures, accepted for publication in Ap
Orbital Characteristics of the Subdwarf-B and F V Star Binary EC~20117-4014(=V4640 Sgr)
Among the competing evolution theories for subdwarf-B (sdB) stars is the
binary evolution scenario. EC~20117-4014 (=V4640~Sgr) is a spectroscopic binary
system consisting of a pulsating sdB star and a late F main-sequence companion
(O'Donoghue et al. 1997), however the period and the orbit semi-major axes have
not been precisely determined. This paper presents orbital characteristics of
the EC 20117-4014 binary system using 20 years of photometric data. Periodic
Observed minus Calculated (O-C) variations were detected in the two highest
amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating
the binary system's precise orbital period (P = 792.3 days) and the
light-travel time amplitude (A = 468.9 s). This binary shows no significant
orbital eccentricity and the upper limit of the eccentricity is 0.025 (using 3
as an upper limit). This upper limit of the eccentricity is the lowest
among all wide sdB binaries with known orbital parameters. This analysis
indicated that the sdB is likely to have lost its hydrogen envelope through
stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB
stars. In addition to those results, the underlying pulsation period change
obtained from the photometric data was = 5.4 (0.7)
d d, which shows that the sdB is just before the end of the
core helium-burning phase
- …