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We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations,
as found in the Internet graph. For the susceptible-infected-susceptible model of epidemics the prevalence
undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the
absence of a finite threshold in networks with purely random wiring, our result suggests that high
clustering (modularity) and degree correlations protect scale-free networks against the spreading of
viruses. We introduce and verify a quantitative description of the epidemic threshold based on the
connectivity of the neighborhoods of the hubs.
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tremely low transmission probability can spread, and any
prophylactic strategies aiming at a reduction of the average
infectiveness would never result in a total eradication of a

time t. An important observable is the prevalence �. It is
the time average of the fraction of infected individuals
reached after a transient from the initial condition. Given
The description of the properties of several real net-
works has manifested that, despite their different natures,
they share some common features [1–4]. They typically
show a scale-free distribution of degree, high clustering,
and a short average path length [5]. Although their topo-
logical properties have been studied in detail, a natural
question that arises concerns the dynamical properties that
result from the different topologies [4]. An example where
the interaction network is crucial for the dynamics is the
case of disease spreading. The study of complex networks
as models of social, technological, and biological interac-
tion has been shown to give valuable insights of how
viruses, diseases, and rumors spread [6–9].

Most of these investigations have been performed as-
suming networks with homogeneous connectivity, where
all individuals have approximately the same number (de-
gree) of contacts with others. The network is typically
modeled as a regular lattice, a random graph, or a super-
position of these two [1]. For such topologies the number
of infected individuals undergoes a phase transition: The
single-contact transmission probability needs to exceed a
critical threshold for a disease to become epidemic [10,11].
Recently, however, it has been discovered that many net-
works involved in the spread of diseases have a scale-free
distribution of degree with a regime of power law decay. In
particular, the web of human sexual contacts [12], the web
of electronic mail communication [13], and the Internet
[14] all contain highly connected individuals or nodes, so-
called hubs, which had been disregarded by the assumption
of homogeneous connectivity in previous works. The first
model studies of disease spread in scale-free networks
including hubs have revealed the absence of an epidemic
threshold. Therefore it has been claimed that in techno-
logical and sociological networks even viruses with ex-
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prevalent virus. However, the alarming predictions have
been obtained assuming random mixing. Apart from the
scale-free degree distribution, all nontrivial topological
properties of real-world sociological and technological
networks have been neglected.

This Letter is dedicated to the analysis of virus spreading
in networks with local structure. In order to account for the
large clustering coefficient and the presence of degree
correlations [14], we model the potentially infective con-
tacts by highly clustered scale-free networks [15]. We find
that the single-contact transmission probability needs to
exceed a finite threshold for a virus to spread and prevail.
Thus the behavior of epidemics is qualitatively different in
highly clustered scale-free networks as compared with
randomly wired scale-free networks. We conjecture that
the difference can be explained by the presence or absence
of connections between the hubs. Based on this conjecture,
we define a new quantity, the secondary reproductive num-
ber, which predicts the epidemic threshold for highly clus-
tered and randomly wired scale-free networks, as well as
for the Internet graph as an example of a real-world scale-
free network [16].

We consider the susceptible-infected-susceptible (SIS)
model, as a simple description of epidemic spreading in a
population [10]. Each individual in the population is either
infected or susceptible at any point in time. The potential
infection pathways are described by interpreting the indi-
viduals as the nodes of a network. The time-discrete dy-
namics is defined by synchronously updating the states of
all individuals with the following rules: If individual A is
infected at time t� 1, it is susceptible at time t. If, other-
wise, individual A is susceptible at time t� 1 and is
connected to at least one individual infected at the same
time, then with probability � individual A is infected at
 2002 The American Physical Society 108701-1
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a network, the only parameter of the model is the infection
probability �. The information on the global spreading of a
disease is contained in the function ����.

The individuals are connected by highly clustered scale-
free networks [15]. They are constructed by iteratively
adding nodes and links in the following way: Generate a
new node and connect it with all active nodes. Set the new
node active as well. Set inactive one of the active nodes.
The probability for deactivating node i is inversely propor-
tional to its current number of links ki. Close the iteration
loop by generating the next new node and so forth, until the
network size reaches the desired value N. Starting from an
initial network of m fully interconnected active nodes, a
network with an average degree hki � 2m links per node is
generated. The degree distribution follows a power law
P�k� � 2m2k�3, and the clustering coefficient C � 5=6.
Note that the deactivation mechanism mentioned here is
only part of the growth mechanism of the network. It is not
related to the dynamics of the SIS model which is applied
after the network has been constructed.

By extensive simulations we have obtained the preva-
lence ���� for populations of N � 105 individuals con-
nected by highly clustered scale-free networks. In Fig. 1
we plot the fraction of infected individuals in the stationary
state, �, for different values of the average connectivity.
Only when � is increased above a value �c is a significant
prevalence observed. The effect of the topological proper-
ties of the highly clustered scale-free networks becomes
clear when comparing the shape of the prevalence curves
with those obtained for randomly wired scale-free net-
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FIG. 1 (color online). Prevalence � (fraction of infected indi-
viduals in the stationary state) as a function of the spreading rate
� for highly clustered scale-free networks, with hki � 4 (circles),
6 (squares), and 10 (diamonds), and for random scale-free net-
works with hki � 6 (solid curve). The simulations have been run
in networks containing 105 nodes and averaging over 100 differ-
ent realizations. Inset: Survival probability, Ps, for a localized
infection after t time steps. Parameter values (from bottom to
top) � � 0:15, 0.18, 0.2, 0.22, 0.25; and hki � 6.
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works. In the latter case no change of behavior is apparent
as the prevalence and its slope vary smoothly when � is
increased.

Further insight into the behavior of epidemics in highly
clustered scale-free networks is gained from the time evo-
lution of the survival probability Ps shown in the inset of
Fig. 1. Taking initial conditions with exactly one randomly
chosen site infected, Ps�t� is the fraction of realizations that
contain at least one infected site after t time steps. For
values of � well below the threshold �c the disease dies out
exponentially, whereas for � above �c the survival proba-
bility Ps approaches a nonzero plateau value. The change
of behavior from rapid eradication to nonzero prevalence is
observed at a finite value of the transmission probability,
independent of the system size. Thus the prevalence of the
SIS model in highly clustered scale-free networks under-
goes a phase transition at a finite critical value �c of the
transmission probability. In other words, viruses with a low
transmission probability do not prevail in these networks.

In order to understand the role played by the topology
we consider the average connectivity of the neighbors of a
node i

knni �
1

ki

X
j2V

kj; (1)

where kj is the degree of node j and the neighborhood of
node i (i.e., the set of nodes directly connected to node i) is
called V .

The structure of the highly clustered scale-free networks
gives rise to correlations between the degree of a node and
the degrees of its neighbors (see Fig. 2). For weakly con-
nected nodes, hknni decays. For the hubs, k � hki, it
reaches a constant value [17]

hknnh i � hki � 1: (2)
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FIG. 2. Average degree of the neighbors of a node with con-
nectivity k in the structured networks with hki � 4 (circles), 6
(open squares), and 10 (diamonds). The asymptotic values for
large k are 3:0	 0:1, 5:1	 0:3, and 9	 1 to be compared with
the theoretical prediction hknnh i � hki � 1 � 3, 5, and 9, respec-
tively [cf. Eq. (3)]. The filled squares are the average degrees of
the neighbors in random scale-free networks with hki � 6.
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For comparison we also calculate hknni for random
scale-free networks. If Pc�k

0jk� is the conditional probabil-
ity that a link belonging to a node with connectivity k
points to a node with connectivity k0, then

hknni �
X
k0
k0Pc�k0jk� �

X
k0

�k0�2

hki
P�k0� �

hk2i
hki

; (3)

where we have used Pc�k
0jk� / k0P�k0� for random net-

works. Now we specifically consider randomly wired
scale-free networks with the degree distribution P�k� �
2m2k�3, the same distribution as in the highly clustered
scale-free networks considered before. The networks are
generated using the algorithm introduced in Ref. [2]. We
identify a node by its rank i according to decreasing
degree. Then node i has degree

ki�N� �
hki
2

�
N
i

�
0:5
: (4)

Inserting hk2i �
P

N
i�1 k

2
i �N� � hki2=4 lnN 
O�N�1� into

Eq. (3) we obtain

hknni �
hki
4
lnN; (5)

independent, on average, of the node under consideration.
This independence is confirmed numerically; see Fig. 2. It
reflects the absence of correlations in the connectivity.
Figure 3 shows the logarithmic dependence of hknni on
system size, in contrast with the constant value obtained for
the hubs in the structured (highly clustered scale-free)
networks.

Now the different connectivity of the hubs in the highly
clustered and random scale-free networks (both having the
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FIG. 3. Dependence of the average degree of the neighbors of
a node with system size N. For the case of highly clustered scale-
free networks, the value has been obtained averaging for nodes
with k > 1000. The theoretical predictions (hki � 1) are also
plotted (dash-dotted line). For the case of the randomly wired
networks, the values are the average over the full range of
available connectivities. The theoretical prediction hki=4 lnN is
also plotted (dashed line).
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same degree distribution) is clear: Whereas in the random
case a hub is connected to other highly connected nodes, in
the highly clustered networks the hubs are almost exclu-
sively connected to low degree nodes. This difference is
essential for the dynamics.

But how is this topological property related to the trans-
mission threshold found of the SIS model? Let us define
the secondary reproductive number as

R2 � �hknnh i: (6)

We show below that the condition R2 � 1 recovers a
previous prediction for the epidemic threshold in randomly
wired networks networks, and gives a good estimate for the
highly clustered scale-free networks and the Internet
graph.

Previously, the behavior of the epidemics has been
described in terms of the basic reproductive number, R0

[19]. It is defined as the average number of secondary
infections produced by an infectious individual in a totally
susceptible population and indicates whether a disease can
ever invade a population. For random networks with broad
degree distribution, the basic reproductive number is given
by

R0 � �
hk2i
hki

: (7)

Only if R0 is larger than unity does the infection prevail.
Employing Eq. (3) we find R0 � R2, such that in randomly
wired networks the basic and secondary reproductive num-
bers coincide. Therefore, the condition R2 � 1 recovers
the standard prediction of the epidemic threshold used in
epidemiology, assuming random mixing of the population.

For the highly clustered scale-free networks, applying
the condition R2 � 1 and using Eq. (2) predicts a threshold

�c �
1

�hki � 1�
: (8)

The onset of nonzero prevalence found numerically (Fig. 1)
is in good agreement with the prediction. Note that for the
highly clustered scale-free networks in general R2 � R0. In
particular, R0 diverges with system size N as lnN leading to
a false prediction of �c � 0 in the limit of large highly
clustered scale-free networks.

In order to check the applicability of the secondary
reproductive number to empirical networks we investigate
the Internet graph. We simulate the SIS model in the net-
work of the autonomous systems at three different time
stages of its evolution [20]. Figure 4 shows the prevalence
of the SIS model as a function of the transmission proba-
bility. The threshold values predicted by the condition 1 �
�chk

nn
h i give a good estimate of the minimum transmission

rate above which the disease spreads. However, using the
basic reproductive number instead [Eq. (7)] gives threshold
values 0.012, 0.009, and 0.007 for years 1997, 1998, and
2000, respectively. This underestimates the threshold
108701-3
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FIG. 4. Prevalence � as a function of the spreading rate � for
the Internet graph at three different times. The large filled
symbols indicate the transmission threshold calculated according
to the secondary reproductive number [Eq. (6)]. The value of
hknnh i has been obtained as an average over the two largest hubs.
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found in the simulations by at least 1 order of magnitude.
Similar to the highly clustered scale-free networks, the
Internet graph displays considerable degree correlations
[14]. The mean connectivity in the neighborhoods of the
hubs is much lower than expected for random wiring. This
explains the failure of the description by the basic repro-
ductive number which neglects the strong correlations. The
secondary reproductive number, however, gives a satisfac-
tory prediction.

We have shown the existence of a finite epidemic thresh-
old in highly clustered scale-free networks in the limit of
infinite system size. Our study has considered for the first
time scale-free networks with realistic topological proper-
ties as a model for the potentially infective contacts be-
tween individuals or nodes. We have conjectured that the
value of the threshold is related to the degree correlations
in the network, such that the product of the transmission
probability � and the mean connectivity hknnh i of the neigh-
bors of the hubs needs to exceed unity for the epidemic to
prevail. This criterion holds precisely for highly clustered
scale-free networks. For randomly wired scale-free net-
works it coincides with the standard prediction in epidemi-
ology given by the basic reproductive number. The
transmission probability required for spreading on the
real Internet graph is approximated well by our criterion,
whereas the basic reproductive number drastically under-
estimates the value.

The existence of an epidemic threshold in highly clus-
tered scale-free networks contrasts with the result for
randomly wired networks, where arbitrarily weak viruses
show finite prevalence. This suggests that the spreading of
viruses in networks with scale-free degree distribution may
be suppressed by nonrandom wiring. In particular, degree
correlations including the absence of direct connections
108701-4
between highly connected nodes [21] may provide protec-
tion against epidemics.

We acknowledge financial support from Project
No. BFM2002-04474-C02-01.
*Email address: victor@imedea.uib.es
[1] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[2] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[3] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E.
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