12 research outputs found

    Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136004/1/em22071.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136004/2/em22071_am.pd

    Developmental Programming: Prenatal Testosterone Excess on Ovarian SF1/ DAX1/ FOXO3.

    No full text
    Prenatal testosterone (T) excess, partly via androgenic programming, enhances follicular recruitment/persistence in sheep as in women with polycystic ovariansyndrome (PCOS). Decreased anti-Mullerian hormone (AMH) in early growing and increased AMH in antral follicles may underlie enhanced recruitment and persistence, respectively. Changes in AMH may be mediated by steroidogenic factor 1 (SF1), an enhancer of AMH, and dosage-sensitive sex reversal, adrenal hypoplasia critical region,on chromosome X, gene 1 (DAX1), that antagonizes SF1. Another mediator could beforkhead box 03 (FOXO3) which regulates follicular recruitment/atresia. To test if androgen-programmed changes in SF1, DAX1 and FOXO3 protein contribute to follicular defects in prenatal T-treated sheep, ovaries from control, prenatal T-, and dihydrotestosterone (DHT)-treated (days 30-90 of gestation) animals at fetal day (FD) 90, FD140 and 1 and 2 years-of-age were studied. Prenatal T increased DAX1 in granulosa cells of primordial through large preantral and theca cells of large preantral follicles at FD140 and increased SF1 in the granulosa cells of preantral and antral and theca cells of large preantral follicle at 2 years-of-age. Prenatal T increased FOXO3 only in theca cells of preantral (FD140) and antral (2 years-of-age) follicles. Prenatal DHT increased DAX1 in granulosa cells from small preantral follicles at FD140 while increasing SF1 in granulosa cells from antral follicles at 1 year-of-age. These age-dependent changes in DAX1/SF1 partly via androgen-programming are consistent with changes in AMH and may contribute to the enhanced follicular recruitment/persistence,and multifollicular phenotype of prenatal T-treated females and may be of translational relevance to PCOFil: Puttabyatappa, M.. University of Michigan; Estados UnidosFil: Matiller, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Stassi, Antonela Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Salvetti, Natalia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Ortega, Hugo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Padmanabhan, Vasantha. Michigan State University; Estados Unido

    Peroxynitrite mediates testosterone-induced vasodilation of microvascular resistance vessels

    No full text
    Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17ß-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TESstimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation

    Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight

    No full text
    Abstract Major alterations in metabolism occur during pregnancy enabling the mother to provide adequate nutrients to support infant development, affecting birth weight (BW) and potentially long-term risk of obesity and cardiometabolic disease. We classified dynamic changes in the maternal lipidome during pregnancy and identified lipids associated with Fenton BW z-score and the umbilical cord blood (CB) lipidome. Lipidomics was performed on first trimester maternal plasma (M1), delivery maternal plasma (M3), and CB plasma in 106 mother-infant dyads. Shifts in the maternal and CB lipidome were consistent with the selective transport of long-chain polyunsaturated fatty acids (PUFA) as well as lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE) species into CB. Partial correlation networks demonstrated fluctuations in correlations between lipid groups at M1, M3, and CB, signifying differences in lipid metabolism. Using linear models, LysoPC and LysoPE groups in CB were positively associated with BW. M1 PUFA containing triglycerides (TG) and phospholipids were correlated with CB LysoPC and LysoPE species and total CB polyunsaturated TGs. These results indicate that early gestational maternal lipid levels influence the CB lipidome and its relationship with BW, suggesting an opportunity to modulate maternal diet and improve long-term offspring cardiometabolic health
    corecore