105 research outputs found
B cell-specific conditional expression of Myd88(p.L252P) leads to the development of diffuse large B cell lymphoma in mice
The adaptor protein MYD88 is critical to relay activation of Toll-like receptor signaling to NF-{kappa}B activation.MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B cell malignancies, including diffuse large B cell lymphoma (DLBCL). 29% of activated B cell (ABC)-type DLBCL, which is characterized by constitutive activation of the NF-{kappa}B pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2. Here, we generated a novel mouse model, in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P)(the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These animals develop a lympho-proliferative disease, and occasional transformation into clonal lymphomas. The clonal disease displays morphological and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression ofBCL2 Cross-validation experiments in human DLBCL samples revealed that bothMYD88andCD79Bmutations are substantially enriched in ABC-DLBCL, compared to germinal center B cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occur with MYD88 mutations, further validating our approach. Lastly,in silicoexperiments revealed that particularly MYD88-mutant ABC-DLBCL cells display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL, which could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL
A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data
The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany
Higher TIER bumble bees and solitary bees recommendations for a semi-field experimental design
The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented.The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented
Abscopal Effects in Radio-ImmunotherapyâResponse Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition
Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has shown promising results in the fight against cancer. Systemic anti-tumor reactions due to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed âabscopal effectâ (AbE). Combination of both treatments can enhance this effect. The aim of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened 168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg every 3 weeks) or nivolumab (3 mg/kg every 2 weeks) and at least one metastasis outside the irradiation field. We estimated the total dose during ICI for each patient using the linear quadratic (LQ) model expressed as 2 Gy equivalent dose (EQD2) using α/ÎČ of 10 Gy. Radiological images were required showing progression or no change in NiLs before and regression after completion of RT(s). Images must have been acquired at least 4 weeks after the onset of ICI or RT. The surface areas of the longest diameters of the short- and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%) patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously, and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24). One to six lesions (mean = 3 ± 2) in each AbE patient were analyzed. Patients were diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC) (n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice (n = 2), or three times (n = 4) with an average total EQD2 of 120.0 ± 37.7 Gy. Eighty-two percent of RTs of AbE patients were applied with high single doses. MM patients received pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration of 45 ± 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict inclusion criteria were applied to distinguish the effects of AbE from the systemic effect of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI and could contribute to the development of a broader range of cancer treatments
Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice
BACKGROUND: Complement represents a crucial mediator of neuroinflammation and neurodegeneration after traumatic brain injury. The role of the terminal complement activation pathway, leading to generation of the membrane attack complex (MAC), has not been thoroughly investigated. CD59 is the major regulator of MAC formation and represents an essential protector from homologous cell injury after complement activation in the injured brain. METHODS: Mice deleted in the Cd59a gene (CD59a(-/-)) and wild-type littermates (n = 60) were subjected to focal closed head injury. Sham-operated (n = 60) and normal untreated mice (n = 14) served as negative controls. The posttraumatic neurological impairment was assessed for up to one week after trauma, using a standardized Neurological Severity Score (NSS). The extent of neuronal cell death was determined by serum levels of neuron-specific enolase (NSE) and by staining of brain tissue sections in TUNEL technique. The expression profiles of pro-apoptotic (Fas, FasL, Bax) and anti-apoptotic (Bcl-2) mediators were determined at the gene and protein level by real-time RT-PCR and Western blot, respectively. RESULTS: Clinically, the brain-injured CD59a(-/- )mice showed a significantly impaired neurological outcome within 7 days, as determined by a higher NSS, compared to wild-type controls. The NSE serum levels, an indirect marker of neuronal cell death, were significantly elevated in CD59a(-/- )mice at 4 h and 24 h after trauma, compared to wild-type littermates. At the tissue level, increased neuronal cell death and brain tissue destruction was detected by TUNEL histochemistry in CD59a(-/- )mice within 24 hours to 7 days after head trauma. The analysis of brain homogenates for potential mediators and regulators of cell death other than the complement MAC (Fas, FasL, Bax, Bcl-2) revealed no difference in gene expression and protein levels between CD59a(-/- )and wild-type mice. CONCLUSION: These data emphasize an important role of CD59 in mediating protection from secondary neuronal cell death and further underscore the key role of the terminal complement pathway in the pathophysiology of traumatic brain injury. The exact mechanisms of complement MAC-induced secondary neuronal cell death after head injury require further investigation
Comparison of 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: Results of a multicenter, single-blind, interindividual, randomized clinical phase III trial
The purpose of this phase III clinical trial was to compare two different extracellular contrast agents, 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine, for magnetic resonance imaging (MRI) in patients with known or suspected focal renal lesions. Using a multicenter, single-blind, interindividual, randomized study design, both contrast agents were compared in a total of 471 patients regarding their diagnostic accuracy, sensitivity, and specificity to correctly classify focal lesions of the kidney. To test for noninferiority the diagnostic accuracy rates for both contrast agents were compared with CT results based on a blinded reading. The average diagnostic accuracy across the three blinded readers ('average reader') was 83.7% for gadobutrol and 87.3% for gadopentate dimeglumine. The increase in accuracy from precontrast to combined precontrast and postcontrast MRI was 8.0% for gadobutrol and 6.9% for gadopentate dimeglumine. Sensitivity of the average reader was 85.2% for gadobutrol and 88.7% for gadopentate dimeglumine. Specificity of the average reader was 82.1% for gadobutrol and 86.1% for gadopentate dimeglumine. In conclusion, this study documents evidence for the noninferiority of a single i.v. bolus injection of 1.0 M gadobutrol compared with 0.5 M gadopentate dimeglumine in the diagnostic assessment of renal lesions with CE-MRI
Nanoparticles that communicate in vivo to amplify tumour targeting
Author Manuscript: 2012 May 29Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of âsignallingâ modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted âreceivingâ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.National Cancer Institute (U.S.) (SBMRI Cancer Center Support Grant 5 P30 CA30199-28)National Cancer Institute (U.S.) (MIT CCNE Grant U54 CA119349)National Cancer Institute (U.S.) (Bioengineering Research Partnership Grant 5-R01-CA124427)National Cancer Institute (U.S.) (UCSD CCNE Grant U54 CA 119335)National Science Foundation (U.S.) (Whitaker Graduate Fellowship
Clonal dynamics of BRAF-driven drug resistance in EGFR-mutant lung cancer
Activation of MAPK signaling via BRAF mutations may limit the activity of EGFR inhibitors in EGFR-mutant lung cancer patients. However, the impact of BRAF mutations on the selection and fitness of emerging resistant clones during anti-EGFR therapy remains elusive. We tracked the evolution of subclonal mutations by whole-exome sequencing and performed clonal analyses of individual metastases during therapy. Complementary functional analyses of polyclonal EGFR-mutant cell pools showed a dose-dependent enrichment of BRAF(V600E) and a loss of EGFR inhibitor susceptibility. The clones remain stable and become vulnerable to combined EGFR, RAF, and MEK inhibition. Moreover, only osimertinib/trametinib combination treatment, but not monotherapy with either of these drugs, leads to robust tumor shrinkage in EGFR-driven xenograft models harboring BRAF mutations. These data provide insights into the dynamics of clonal evolution of EGFR-mutant tumors and the therapeutic implications of BRAF(V600E) co-mutations that may facilitate the development of treatment strategies to improve the prognosis of these patients
- âŠ