1,527 research outputs found
What can we learn from atomistic simulations of bioactive glasses?
In the last decades, most experimental efforts have been devoted to design bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) with enhanced biological and mechanical properties by adding specific ions to known bioactive compositions. Concurrently, computational research has been focused to the understanding of the relationships between bioactivity and composition by rationalization of the role of the doping ions. Thus, a deep knowledge of the structural organization of the constituent atoms of the bioactive glasses has been gained by the employment of ab initio and classical molecular dynamics simulations techniques. This chapter reviews the recent successes in this field by presenting, in a concise way, the structure–properties relationships of silicate, phospho-silicate and phosphate glasses with potential bioactive properties
Lateral Wind Estimation and Backstepping Compensation for Safer Self-Driving Racecars
This paper addresses the lateral wind gust estimation and compensation problem for racecar models. A wind-sensorless solution, i.e. a solution not using direct wind measures, is proposed. More precisely, by modeling the wind disturbance as a fully unknown input signal, an input-state observer is derived using only information about the vehicle’s longitudinal speed and lateral pose relative to the road. The observer is characterized by a simple structure, explicit closed-form, direct implementability on a micro-controller, and dead-beat property, i.e. it ensures the convergence of the estimation error in a finite time. Moreover, leveraging on the reconstructed wind data, a backstepping wind-compensation controller is also proposed, allowing asymptotic tracking of a path with desired curvature and providing the end-user with a free control parameter specifying the desired tracking speed. Formal proofs of the estimation error and tracking error convergence are given. Performance evaluation of the proposed solution is obtained in simulation by closing in the loop the full nonlinear model of a real racecar, the Robocar system, with the proposed estimation and control method. Both the estimator and the controller are shown to outperform existing solutions, even in the presence of noisy measurements
Resource-Aware Multimedia Content Delivery: A Gambling Approach
In this paper, we propose a resource-aware solution to achieving reliable and scalable stream diffusion in a probabilistic model, i.e. where communication links and processes are subject to message losses and crashes, respectively. Our solution is resource-aware in the sense that it limits the memory consumption, by strictly scoping the knowledge each process has about the system, and the bandwidth available to each process, by assigning a fixed quota of messages to each process. We describe our approach as gambling in the sense that it consists in accepting to give up on a few processes sometimes, in the hope of better serving all processes most of the time. That is, our solution deliberately takes the risk not to reach some processes in some executions, in order to reach every process in most executions. The underlying stream diffusion algorithm is based on a tree-construction technique that dynamically distributes the load of forwarding stream packets among processes, based on their respective available bandwidths. Simulations show that this approach pays off when compared to traditional gossiping, when the latter faces identical bandwidth constraints
Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153-149 and zinc-lacking Ml452-151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153-149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452-151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452-151 and Ml153-149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153-149 has formed only amorphous aggregates and Ml452-151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases
Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles
A multiscale molecular dynamics simulation study has been carried out in order to provide in-depth information on the adsorption of hemoglobin, myoglobin, and trypsin over citrate-capped AuNPs of 15 nm diameter. In particular, determinants for single proteins adsorption and simultaneous adsorption of the three types of proteins considered have been studied by Coarse-Grained and Meso-Scale molecular simulations, respectively. The results, discussed in the light of the controversial experimental data reported in the current experimental literature, have provided a detailed description of the (i) recognition process, (ii) number of proteins involved in the early stages of corona formation, (iii) protein competition for AuNP adsorption, (iv) interaction modalities between AuNP and protein binding sites, and (v) protein structural preservation and alteration
Accurate First-Principle Prediction of 29Si and 17O NMR Parameters in SiO2 Polymorphs: The Cases of Zeolites Sigma-2 and Ferrierite
Abstract: The magnetic shielding tensors of silica polymorphs have been investigated by meansof quantum chemical calculations. Several levels of theory, from Hartree-Fock to the lastgeneration of Density Functional Theory based approaches, have been tested on predicting29Si and 17O isotropic and principal components of the chemical shift tensors together with 17Oquadrupolar coupling constants. The NMR parameters have been computed on all known silicasystems, namely, R-quartz, R-cristobalite, coesite, Sigma-2, and ferrierite zeolites. Besides, clusterbased approaches have been compared to a hybrid Quantum-Mechanics/Molecular-Mechanics(QM/MM) method, within the ONIOM scheme. The convergence of computed 17O NMRparameters with respect to cluster size is found to be system-dependent. Excellent agreementbetween computed and experimental data has been found for 29Si NMR parameters of thedifferent Si sites of silica polymorphs and of Sigma-2 and ferrierite zeolites
Tattooing of the nipple-areola complex: What not to do. A case series
Introduction: Reconstruction of the nipple areola complex (NAC) is the final and easier step of breast reconstruction. However, surgeons, especially if trainees, typically have not developed tattoo skills during their training. The aim of this report is to share advice developed in our clinical practice that would minimize patient complaints and complications while performing NAC tattoos. Methods: From January 2016 to May 2018, reconstruction of NAC was performed in 48 consecutive patients. Nipple reconstruction was performed initially using skin flaps and this was followed three to eight months later by NAC tattooing. We analyzed medical reports at 12 months follow-up where we usually record patient satisfaction (very satisfied, satisfied, dissatisfied) and every patient's complaint or complication. Results: Thirty-two patients (67%) were very satisfied of NAC tattooing, twelve patients (25%) satisfied, while four patients (8%) dissatisfied. Patients complained for not having involved in choosing color, areas without sufficient pigment, extreme darkness of the tattooed NAC and artificial look. Conclusion: Tattooing is a simple and safe procedure, with a high satisfaction rate. Based on our experience, despite some technical aspects have to be considered, it is a procedure that can be safely performed by plastic surgical trainees
Biasing crystallization in fused silica: An assessment of optimal metadynamics parameters
Metadynamics (MetaD) is a useful technique to study rare events such as crystallization. It has been only recently applied to study nucleation and crystallization in glass-forming liquids such as silicates, but the optimal set of parameters to drive crystallization and obtain converged free energy surfaces is still unexplored. In this work, we systematically investigated the effects of the simulation conditions to efficiently study the thermodynamics and mechanism of crystallization in highly viscous systems. As a prototype system, we used fused silica, which easily crystallizes to β-cristobalite through MetaD simulations, owing to its simple microstructure. We investigated the influence of the height, width, and bias factor used to define the biasing Gaussian potential, as well as the effects of the temperature and system size on the results. Among these parameters, the bias factor and temperature seem to be most effective in sampling the free energy landscape of melt to crystal transition and reaching convergence more quickly. We also demonstrate that the temperature rescaling from T > Tm is a reliable approach to recover free energy surfaces below Tm, provided that the temperature gap is below 600 K and the configurational space has been properly sampled. Finally, albeit a complete crystallization is hard to achieve with large simulation boxes, these can be reliably and effectively exploited to study the first stages of nucleation
Nursing student attitudes towards older people: validity and reliability of the Italian version of the Kogan Attitudes towards Older People scale
Aim. This paper reports a study testing the validity and reliability of the Italian version of the Kogan Attitude towards Older People scale.
Background. Nursing students’ attitudes towards older people can affect their
preference for working with them. One of the most common instruments used to
assess these attitudes is the Kogan Attitude towards Older People scale. Previous validation studies performed on college students internationally have demonstrated good reliability and validity. The psychometric properties of the Italian version have not yet been tested.
Design. A cross-sectional, descriptive study.
Method. The study was conducted from March–June 2010 with a convenience
sample of nursing students attending two Italian universities. Reliability was evaluated using internal consistency and item-to-total correlation. Content and construct
validity were evaluated using a content validity index and principal factor
analysis.
Results. A total of 1637 nursing students participated in the study. Two factors were extracted from the factor analysis: prejudice describing a negative disposition and appreciation indicating a favourable feeling and opinion towards older people.
Conclusion. The Kogan Attitude towards Older People scale applied to Italian
nursing students exhibited good internal consistency. The two-dimensional construct of the scale was congruent with some, but not all, results of previous studies due to methodological differences among the studies. Based on the study findings,
the scale can be recommended for future research studies in Italy including use as pre/post-test measurement associated with nursing education programmes
Preferential Nucleosome Occupancy at High Values of DNA Helical Rise
Nucleosomes are the basic structural units of eukaryotic chromatin and play a key role in the regulation of gene expression. Nucleosome formation depends on several factors, including properties of the sequence itself, but also physical constraints and epigenetic factors such as chromatin-remodelling enzymes. In this view, a sequence-dependent approach is able to capture a general tendency of a region to bind a histone octamer. A reference data set of positioned nucleosomes of Saccharomyces cerevisiae was used to study the role of DNA helical rise in histone–DNA interaction. Genomic sequences were transformed into arrays of helical rise values by a tetranucleotide code and then turned into profiles of mean helical rise values. These profiles resemble maps of nucleosome occupancy, suggesting that intrinsic histone–DNA interactions are linked to helical rise. The obtained results show that preferential nucleosome occupancy occurs where the mean helical rise reaches its largest values. Mean helical rise profiles obtained by using maps of positioned nucleosomes of the Drosophila melanogaster and Plasmodium falciparum genomes, as well as Homo sapiens chromosome 20 confirm that nucleosomes are mainly located where the mean helical rise reaches its largest values
- …