718 research outputs found

    Magnetic field induced non-Fermi liquid to Fermi liquid crossover at the quantum critical point of YbCu5x_{5-x}Aux_{x}

    Full text link
    The temperature (T) dependence of the muon and 63^{63}Cu nuclear spin-lattice relaxation rates 1/T11/T_1 in YbCu4.4Au0.6 is reported over nearly four decades. It is shown that for T0T\to 0 1/T11/T_1 diverges following the behaviour predicted by the self-consistent renormalization (SCR) theory developed by Moriya for a ferromagnetic quantum critical point. On the other hand, the static uniform susceptibility χs\chi_s is observed to diverge as T2/3T^{-2/3} and 1/T1Tχs21/T_1T\propto \chi_s^2, a behaviour which is not accounted for by SCR theory. The application of a magnetic field HH is observed to induce a crossover to a Fermi liquid behaviour and for T0T\to 0 1/T11/T_1 is found to obey the scaling law 1/T1(H)=1/T1(0)[1+(μBH/kBT)2]11/T_1(H)= 1/T_1(0)[1+(\mu_BH/k_BT)^2]^{-1}.Comment: 4 pages, 4 figure

    The main stages in the history of systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus can be considered the most characteristic and important among the connective tissue diseases. In this short review the main stages of its history are sketched, from the introduction of the term "lupus", traditionally attributed to Roger Frugardi, in 1230 (but in fact already documented in the 10th century) to the actual knowledge of its clinical and laboratory aspects. Initially considered exclusively of dermatological interest, the first to describe a systemic form with visceral involvement were Moriz Kohn Kaposi and William Osler. Significant contribution was also given by serological diagnosis, and in particular, by the identification of specific markers of disease, such as anti-native DNA and anti-Sm antibodies, allowing early diagnosis and the establishment of an adequate therapy

    Crystal-chemistry of sulfates from the Apuan Alps, Tuscany, Italy. VIII. New data on khademite, Al(SO 4)F(H 2 O) 5

    Get PDF
    Khademite, ideally Al(SO4)F(H2O)5, from the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy, has been characterised through quantitative electron microprobe analysis, micro-Raman spectroscopy and single-crystal X-ray diffraction. Khademite occurs as colourless to whitish tabular crystals, up to 5 mm. Electron microprobe analysis (in wt.%, average of 20 spot analyses) gave: SO3 35.43, Al2O3 21.27, F 6.92, H2Ocalc 39.73, sum 103.35, -O = F 2.92, total 100.43. On the basis of 10 anions per formula unit, assuming the occurrence of 5 H2O groups and 1 (F+OH) atom per formula unit, its chemical formula can be written as Al0.96S1.02O4[F0.84(OH)0.16]Σ1.00·5H2O. The Raman spectrum of khademite is characterised by the occurrence of vibrational modes of SO4 groups and by broad and strong bands due to the O-H stretching modes. Khademite is orthorhombic, space group Pcab, with unit-cell parameters a = 11.1713(2), b = 13.0432(3), c = 10.8815(2) Å, V = 1585.54(5) Å3 and Z = 8. The crystal structure refinement converged to R1 = 0.0293 on the basis of 2359 unique reflections with Fo > 4σ(Fo) and 152 refined parameters. The crystal structure of khademite is characterised by the alternation, along b, of two distinct kinds of {010} layers, one formed by [001] rows of isolated Al-centred octahedra, connected to each other through H bonds, and the other showing isolated SO4 groups. Along b, oxygen atoms belonging to SO4 groups act as acceptor of H bonds from H2O groups coordinating Al atoms. The new data improved the description of the H bonds in khademite and led us to discuss about the possible existence of its (OH)-analogue, rostite. In addition, Raman spectroscopic data were collected on the same crystal used for the crystal-chemical characterisation, allowing a comparison with previous results

    Recommended Nomenclature for the Sapphirine and Surinamite Groups (Sapphirine Supergroup)

    Get PDF
    Minerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly-aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup Corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largest M sites, namely, sapphirine (Mg), aenigmatite (Na), and rhonite (Ca). Classification at the third level is based on the occupancy of the smallest M site with most shared edges, M7, at which the dominant cation is most often Ti (aenigmatite, rhonite, makarochkinite), Fe(3+) (wilkinsonite, dorrite, hogtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerized T sites are considered together, e.g. ordering of Be at these sites distinguishes hogtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on X(Mg) = Mg/(Mg + Fe(2+)) at the M sites (excluding the two largest and M7). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (X(mg) \u3e 0.5), or Fe(2+)-dominant (X(Mg) \u3c 0.5), at these M sites. However, X(mg) ranges from 1.00 to 0.03 in material described as rhonite, i.e. there are two species present, one Mg-dominant, the other Fe(2+)-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhonite in the Allende meteorite, which is distinguished front rhonite and dorrite in that Mg rather than Ti or FC(3+) is dominant at M7, and an Al-dominant analogue of sapphirine, in which Al \u3e Si at the two most polymerized T sites vs. Al \u3c Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended

    Towards Socially and Emotionally Believable ICT Interfaces

    Get PDF
    In order to realize an artificial intelligence focused on human needs, it is necessary to identify the interactional characteristics that describe human mood, social behavior, beliefs, and experiences. The cross-modal analysis of communicative macro-signals represents the first step in this direction. The second step requires the definition of adequate mathematical representations of these signals to validate them perceptively (on the human side) and computationally

    Tetrahedrite-(Hg), a new 'old' member of the tetrahedrite group

    Get PDF
    Tetrahedrite-(Hg), Cu6(Cu4Hg2)Sb4S13, has been approved as a new mineral species using samples from Buca della Vena mine (hereafter BdV), Italy, Jedová hora (Jh), Czech Republic and RoŽÅ 1/2ava (R), Slovakia. It occurs as anhedral grains or as tetrahedral crystals, black in colour, with metallic lustre. At BdV it is associated with cinnabar and chalcostibite in dolomite veins. At Jh, tetrahedrite-(Hg) is associated with baryte and chalcopyrite in quartz-siderite-dolomite veins; at R it is associated with quartz in siderite-quartz veins. Tetrahedrite-(Hg) is isotropic, greyish-white in colour, with creamy tints. Minimum and maximum reflectance data for Commission on Ore Mineralogy wavelengths in air (BdV sample), R in %) are 32.5 at 420 nm; 32.9 at 546 nm; 33.2 at 589 nm; and 30.9 at 650 nm. Chemical formulae of the samples studied, recalculated on the basis of 4 (As + Sb + Bi) atoms per formula unit, are: (Cu9.44Ag0.07)Σ9.51(Hg1.64Zn0.36Fe0.06)Σ2.06Sb4(S12.69Se0.01)Σ12.70 (BdV), Cu9.69(Hg1.75Fe0.25Zn0.06)Σ2.06(Sb3.94As0.06)S12.87 (Jh) and (Cu9.76Ag0.04) Σ9.80(Hg1.83Fe0.15Zn0.10)Σ2.08(Sb3.17As0.58Bi0.25)S13.01 (R). Tetrahedrite-(Hg) is cubic, I3m, with a = 10.5057(8) Å, V = 1159.5(3) Å3 and Z = 2 (BdV). Unit-cell parameters for the other two samples are a = 10.4939(1) Å and V = 1155.61(5) Å3 (Jh) and a = 10.4725(1) Å and V = 1148.55(6) Å3 (R). The crystal structure of tetrahedrite-(Hg) has been refined by single-crystal X-ray diffraction data to a final R1 = 0.019 on the basis of 335 reflections with Fo > 4σ(Fo) and 20 refined parameters. Tetrahedrite-(Hg) is isotypic with other members of the tetrahedrite group. Mercury is hosted at the tetrahedrally coordinated M(1) site, along with minor Zn and Fe. The occurrence of Hg at this position agrees both with the relatively large M(1)-S(1) bond distance (2.393 Å) and the refined site scattering. Previous occurrences of Hg-rich tetrahedrite and tetrahedrite-(Hg) are reviewed, and its relations with other Hg sulfosalts are discussed

    Induction Machine Stator Fault Tracking using the Growing Curvilinear Component Analysis

    Get PDF
    Detection of stator-based faults in Induction Machines (IMs) can be carried out in numerous ways. In particular, the shorted turns in stator windings of IM are among the most common faults in the industry. As a matter of fact, most IMs come with pre-installed current sensors for the purpose of control and protection. At this aim, using only the stator current for fault detection has become a recent trend nowadays as it is much cheaper than installing additional sensors. The three-phase stator current signatures have been used in this study to observe the effect of stator inter-turn fault with respect to the healthy condition of the IM. The pre-processing of the healthy and faulty current signatures has been done via the in-built DSP module of dSPACE after which, these current signatures are passed into the MATLAB® software for further analysis using AI techniques. The authors present a Growing Curvilinear Component Analysis (GCCA) neural network that is capable of detecting and follow the evolution of the stator fault using the stator current signature, making online fault detection possible. For this purpose, a topological manifold analysis is carried out to study the fault evolution, which is a fundamental step for calibrating the GCCA neural network. The effectiveness of the proposed method has been verified experimentally

    Average structure and faulted sequences in orientite

    Full text link

    Crystal-chemistry of sulfates from the apuan alps (tuscany, italy). VI. Tl-bearing alum-(k) and voltaite from the fornovolasco mining complex

    Get PDF
    Thallium-bearing samples of alum-(K) and voltaite from the Fornovolasco mining complex (Apuan Alps, Tuscany, Italy) have been characterized through X‑ray diffraction, chemical analyses, micro-Raman, infrared (FTIR), Mössbauer, and X-ray absorption spectroscopy (XAS). Alum-(K) occurs as anhedral colorless grains or rarely as octahedral crystals, up to 5 mm. Electron-microprobe analysis points to the chemical formula (K0.74Tl0.10)ς0.84(Al0.84Fe0.14)ς0.98S2.03O8·12H2O. The occurrence of minor NH4+ extNH4+ ext{NH}_{4}^{+} was detected through FTIR spectroscopy. Its unit-cell parameter is a = 12.2030(2) Å, V = 1817.19(9) Å3, space group Pa3¯. Paar3.Paar{3}.Its crystal structure has been refined down to R1 = 0.0351 for 648 reflections with F o > 4σ(Fo) and 61 refined parameters. The crystal structure refinement agrees with the partial substitution of K by 12 mol% Tl. This substitution is confirmed by XAS data, showing the presence of Tl+ having a first coordination shell mainly formed by 6 O atoms at 2.84(2) Å. Voltaite occurs as dark green cubic crystals, up to 1 mm in size. Voltaite is chemically zoned, with distinct domains having chemical formula (K1.94Tl0.28)σ2.22(Fe2+3.57Mg0.94Mn0.55)σ5.06Fe3+3.06Al0.98S11.92O4818H2O and (K2.04Tl0.32)σ2.36(Fe2+3.83Mg0.91Mn0.29)σ5.03Fe3+3.05Al0.97S11.92O48 18H2O, respectively. Infrared spectroscopy confirmed the occurrence of minor NH4+ also in voltaite. Its unit-cell parameter is a = 27.2635 Å, V = 20265(4) Å3, space group Fd3c. The crystal structure was refined down to R1 = 0.0434 for 817 reflections with Fo > 4σ(Fo) and 87 refined parameters. The partial replacement of K by Tl is confirmed by the structural refinement. XAS spectroscopy showed that Tl+ is bonded to six O atoms, at 2.89(2) Å. The multi-technique characterization of thallium-bearing alum-(K) and voltaite improves our understanding of the role of K-bearing sulfates in immobilizing Tl in acid mine drainage systems, temporarily avoiding its dispersion in the environment
    corecore