3,005 research outputs found

    Exercise and hypertrophic cardiomyopathy: Two incompatible entities?

    Get PDF
    A greater understanding of the pathogenic mechanisms underpinning hypertrophic cardiomyopathy (HCM) has translated to improved medical care and better survival of affected individuals. Historically these patients were considered to be at high risk of sudden cardiac death (SCD) during exercise; therefore, exercise recommendations were highly conservative and promoted a sedentary life style. There is emerging evidence that suggests that exercise in HCM has a favorable effect on cardiovascular remodeling and moderate exercise programs have not raised any safety concerns. Furthermore, individuals with HCM have a similar burden of atherosclerotic risk factors as the general population in whom exercise has been associated with a reduction in myocardial infarction, stroke, and heart failure, especially among those with a high-risk burden. Small studies revealed that athletes who choose to continue with regular competition do not demonstrate adverse outcomes when compared to those who discontinue sport, and active individuals implanted with an implantable cardioverter defibrillator do not have an increased risk of appropriate shocks or other adverse events. The recently published exercise recommendations from the European Association for Preventative Cardiology account for more contemporary evidence and adopt a more liberal stance regarding competitive and high intensity sport in individuals with low-risk HCM. This review addresses the issue of exercise in individuals with HCM, and explores current evidence supporting safety of exercise in HCM, potential caveats, and areas of further research

    Active Flow Control at Low Reynolds Numbers by Periodic Airfoil Morphing

    Get PDF
    This paper investigates the application of a periodically deforming airfoil surface for the purpose of flow control at low Reynolds numbers. A physical model has been fabricated by bonding Macro Fiber Composite (MFC) actuators to the underside of a NACA 4415’s suction surface. The results presented build on work by Jones et al.1 First, the behavior of the surface when actuated at a range frequencies is investigated through a combination of photogrammetric and laser sensor measurements. Second, the aerodynamic performance of this novel flow control technique is presented. It is shown that when the actuation frequency ‘locks-in’ to the surface motion significant improvements in performance are observed in a flight regime notorious for poor airfoil behavior

    General relativistic modelling of the negative reverberation X-ray time delays in AGN

    Full text link
    We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above 10410^{-4} Hz) i.e. soft band variations lag the hard band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral iron line (Fe kα\alpha) at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly-used, but erroneous, top-hat models. Additionally we parametrize the positive part of the time-lag spectra (typically seen below 10410^{-4} Hz) by a power-law. We find that the best-fitting BH masses, M, agree quite well with those derived by other methods, thus providing us with a new tool for BH mass determination. We find no evidence for any correlation between M and the BH spin parameter, α\alpha, the viewing angle, θ\theta, or the height of the X-ray source above the disc, hh. Also on average, the X-ray source lies only around 3.7 gravitational radii above the accretion disc and the viewing angles are distributed uniformly between 20 and 60 degrees. Finally, there is a tentative indication that the distribution of spin parameters may be bimodal above and below 0.62.Comment: Accepted for publication in MNRAS. The paper is 22 pages long and contains 19 figures and 2 table

    X-ray and optical counterparts of hard X-ray selected sources from the SHEEP survey: first results

    Full text link
    We present followup observations of five hard X-ray sources from the ASCA 5-10 keV SHEEP survey, which has a limiting flux of 1013\sim 10^{-13} erg cm2^{-2} s1^{-1}. Chandra data have been obtained to improve the X-ray positions from a few arcmin to <1<1'', which allows unambiguous optical identification. While the objects almost certainly house AGN based on their X-ray luminosity, optical spectroscopy reveals a variety of properties. The identifications indicate that the SHEEP survey samples the same populations as deeper surveys which probe the origin of the X-ray background, but because the SHEEP sources are far brighter, they are more amenable to detailed followup work. We find a variety of classifications and properties, including a type II QSO, a galaxy undergoing star formation, and a broad-line AGN which has a very hard X-ray spectrum, indicating substantial absorption in the X-ray but none in the optical. Two objects have X-ray/optical flux ratios which, were they at an X-ray flux level typical of objects in Chandra deep surveys, would place them in the ``optically faint'' category. They are both identified with broad line QSOs at z1\sim 1. Clearly this survey - which is relatively unbiased against obscured objects - is revealing a set of remarkable objects quite different to the familiar classes of AGN found in previous optical and soft X-ray surveys.Comment: 5 pages, 3 figures. MNRAS, in pres

    Variability of the soft X-ray excess in IRAS 13224-3809

    Full text link
    We study the soft excess variability of the narrow line Seyfert 1 galaxy IRAS 13224-3809. We considered all five archival XMM-Newton observations, and we applied the 'flux-flux plot' (FFP) method. We found that the flux-flux plots were highly affected by the choice of the light curves' time bin size, most probably because of the fast and large amplitude variations, and the intrinsic non-linear flux--flux relations in this source. Therefore, we recommend that the smallest bin-size should be used in such cases. Hence, We constructed FFPs in 11 energy bands below 1.7 keV, and we considered the 1.7-3 keV band, as being representative of the primary emission. The FFPs are reasonably well fitted by a 'power-law plus a constant' model. We detected significant positive constants in three out of five observations. The best-fit slopes are flatter than unity at energies below 0.9\sim 0.9 keV, where the soft excess is strongest. This suggests the presence of intrinsic spectral variability. A power-law-like primary component, which is variable in flux and spectral slope (as ΓNPL0.1\Gamma\propto N_{\rm PL}^{0.1}) and a soft-excess component, which varies with the primary continuum (as FexcessFprimary0.46F_{\rm excess}\propto F_{\rm primary}^{0.46}), can broadly explain the FFPs. In fact, this can create positive `constants', even when a stable spectral component does not exist. Nevertheless, the possibility of a stable, soft--band constant component cannot be ruled out, but its contribution to the observed 0.2-1 keV band flux should be less than 15\sim 15 %. The model constants in the FFPs were consistent with zero in one observation, and negative at energies below 1 keV in another. It is hard to explain these results in the context of any spectral variability scenario, but they may signify the presence of a variable, warm absorber in the source.Comment: Accepted for publication in A&A, 10 pages, 7 figure

    Discovery of multiple Lorentzian components in the X-ray timing properties of the Narrow Line Seyfert 1 Ark 564

    Full text link
    We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency which is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Extensive X-ray variability studies of NGC 7314 using long XMM-Newton observations

    Full text link
    We present a detailed X-ray variability study of the low mass Active Galactic Nuclei (AGN) NGC 7314 using the two newly obtained XMM-Newton observations (140140 and 130130 ks), together with two archival data sets of shorter duration (4545 and 8484 ks). The relationship between the X-ray variability characteristics and other physical source properties (such as the black hole mass) are still relatively poorly defined, especially for low-mass AGN. We perform a new, fully analytical, power spectral density (PSD) model analysis method, which will be described in detail in a forthcoming paper, that takes into consideration the spectral distortions, caused by red-noise leak. We find that the PSD in the 0.5100.5-10 keV energy range, can be represented by a bending power-law with a bend around 6.7×1056.7\times10^{-5} Hz, having a slope of 0.510.51 and 1.991.99 below and above the bend, respectively. Adding our bend time-scale estimate, to an already published ensemble of estimates from several AGN, supports the idea that the bend time-scale depends linearly only on the black hole mass and not on the bolometric luminosity. Moreover, we find that as the energy range increases, the PSD normalization increases and there is a hint that simultaneously the high frequency slope becomes steeper. Finally, the X-ray time-lag spectrum of NGC 7314 shows some very weak signatures of relativistic reflection, and the energy resolved time-lag spectrum, for frequencies around 3×1043\times10^{-4} Hz, shows no signatures of X-ray reverberation. We show that the previous claim about ks time-delays in this source, is simply an artefact induced by the minuscule number of points entering during the time-lag estimation in the low frequency part of the time-lag spectrum (i.e. below 10410^{-4} Hz).Comment: Accepted for publication in MNRAS. The paper is 21 pages long and contains 15 figures and 3 table
    corecore