30 research outputs found

    Assessing seasonal demographic covariation to understand environmental‐change impacts on a hibernating mammal

    Get PDF
    Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer ) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments

    The road to success and the fences to be crossed: considering multiple infrastructure in landscape connectivity modelling

    Get PDF
    Linear infrastructure represent a barrier to movement for many species, reducing the connectivity of the landscapes in which they reside. Of all linear infrastructure, roads and fences are two of the most ubiquitous, and are understood to reduce landscape connectivity for wildlife. However, what is often neglected consideration is a holistic approach of modelling the effects of multiple types of linear infrastructure simultaneously. Few studies have examined this, typically assessing the impacts of a singular kind of infrastructure on landscape connectivity. Therefore, the aim of this study is to address the relative importance of considering multiple kinds of linear infrastructure in landscape connectivity modelling. We utilised presence data of red deer Cervus elaphus and wild boar Sus scrofa in Doñana Biosphere Reserve (Spain) to generate a sequential approach of scenarios of landscape connectivity; firstly only with environmental variables, secondly with roads as the sole infrastructure, thirdly with the addition of fences, and finally with the further addition of fences and wildlife road-crossing structures. We found that the connectivity of the landscape was greatly affected by the addition of fences and wildlife road-crossing structures in both species, with fences in particular causing considerable alterations to estimated movement pathways. Our finding impresses a need to consider multiple different types of linear infrastructure when modelling landscape connectivity to enable a more realistic view of wildlife movement and inform mitigation and conservation measures more accurately

    Global analysis reveals complex demographic responses of mammals to climate change

    Get PDF
    Approximately 25 % of mammals are threatened globally with extinction, a risk that is amplified under climate change1. Persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development, reproduction), and hence, on population dynamics2. Thus, to quantify which species and places on Earth are most vulnerable to climate-driven extinction, a global understanding of how demographic rates respond to climate is needed3. We synthesise information on such responses in terrestrial mammals, where extensive demographic data are available4. Given the importance of assessing the full spectrum of responses, we focus on studies that quantitatively link climate to multiple demographic rates. We identify 106 such studies, corresponding to 86 mammal species. We reveal a strong mismatch between the locations of demographic studies and the regions and taxa currently recognised as most vulnerable to climate change5,6. Moreover, we show that the effects of climate change on mammals will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others. Assessments of population viability under climate change therefore need to account for multiple demographic responses. We advocate to prioritise coordinated actions to assess mammal demography holistically for effective conservation worldwide

    Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time

    Get PDF
    There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populations of 62 plants, mostly herbaceous species from temperate biomes, to link plant population growth rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demographic responses to precipitation than temperature, especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than long-lived species. We find that precipitation anomalies have a nearly three-fold larger effect on λ than temperature. Species with shorter generation time have much stronger absolute responses to climate anomalies. We conclude that key species-level traits can predict plant population responses to climate, and discuss the relevance of this generalization for conservation planning

    The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge : a global analysis

    Get PDF
    1. Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development and reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. 2. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. 3. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute <1% of all terrestrial mammals. 4. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. 5. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa

    Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant <i>Drosophyllum lusitanicum</i>

    No full text
    In fire-prone ecosystems, many plant species have specialized mechanisms of seed dormancy that ensure a successful recruitment after fire. A well-documented mechanism is the germination stimulated by fire-related cues, such as heat shock and smoke. However, less is known about the role of inhibitory germination signals (e.g. allelopathy) in regulating post-fire recruitment. Plant leachates derived from the unburned vegetation can enforce dormancy by means of allelopathic compounds, acting as a signal of unfavourable (highly competitive) niche for germination in pyrophyte species. Here, we assessed the separate effects of heat shock and plant leachates on seed germination of Drosophyllum lusitanicum, an endangered carnivorous plant endemic to Mediterranean fire-prone heathlands. We performed a germination experiment in which seeds were subjected to three treatments: (1) 5 min at 100 °C, (2) watering with plant leachate, and (3) control. Germination rate and seed viability was determined after 63 days. Heat shock stimulated seed germination in D. lusitanicum while plant leachates had inhibitory germination effects without reducing seed viability. Thus, both positive and negative signals could be involved in its successful post-fire recruitment. Fire would break seed dormancy and stimulate seed germination of D. lusitanicum through high temperatures, but also by eliminating allelochemical compounds from the soil. These results help to understand the population dynamics patterns found for D. lusitanicum in natural populations, and highlight the role of fire in the ecology and conservation of this endangered species. Seed dormancy imposed by plant-derived leachates as an adaptive mechanism should be considered more in fire ecology theory

    Transient facilitation of resprouting shrubs in fire-prone habitats

    No full text
    Aims Fires play a crucial role mediating species interactions in the Mediterranean Basin, with one prominent example being the nursing effect of post-fire resprouting shrubs on tree recruits, which then outcompete their benefactors throughout succession. Yet, the community structuring role of resprouting shrubs as potential facilitators of post-fire recruiting subshrub species, which are commonly outcompeted in late post-fire stages, has been overlooked. The aims of this work were to investigate (i) whether proximity to resprouting shrubs increased the demographic performance of a fire-adapted carnivorous subshrub and (ii) whether mature shrubs negatively affected the performance of established plants through interference with prey capture. Methods To evaluate the facilitative effects of resprouting shrubs, we sowed seeds of Drosophyllum lusitanicum, a carnivorous, seeder pyrophyte, into two microhabitats in recently burned heathland patches defined by proximity to resprouting shrubs. We monitored key demographic rates of emerged seedlings for 2 years. To test for competitive effects of shrubs on plant performance at a later habitat regeneration stage, we placed greenhouse-reared, potted plants into distinct microhabitats in neighboring burned and unburned heathland patches and monitored prey capture. Both experiments were performed in the Aljibe Mountains at the Northern Strait of Gibraltar and were replicated in 2 years. Important Findings Resprouting shrubs significantly improved survival, juvenile size and flowering probability compared with open microhabitats, and had no significantly negative effects on the growth of recruits. Prey capture was significantly lower in unburned heathland patches compared with burned ones, thus partly explaining the decrease in survival of Drosophyllum individuals in mature heathlands. However, microhabitat did not affect prey capture. Our findings suggest that not only periodic fires, removing biomass in mature stands, but also resprouting neighbors, increasing establishment success after fire, may be important for the viability of early successional pyrophytes

    Interactive life-history traits predict sensitivity of plants and animals to temporal autocorrelation.

    No full text
    Temporal autocorrelation in demographic processes is an important aspect of population dynamics, but a comprehensive examination of its effects on different life‐history strategies is lacking. We use matrix population models from 454 plant and animal populations to simulate stochastic population growth rates (log λs) under different temporal autocorrelations in demographic rates, using simulated and observed covariation among rates. We then test for differences in sensitivities, or changes of log λs to changes in autocorrelation among two major axes of life‐history strategies, obtained from phylogenetically informed principal component analysis: the fast‐slow and reproductive‐strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrelation in demographic rates across reproductive strategies. Slow life histories are less sensitive to temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We provide cross‐taxonomic evidence that changes in the autocorrelation of environmental variation may affect a wide range of species, depending on complex interactions of life‐history strategies
    corecore