199 research outputs found

    Colouring triangle-free graphs with local list sizes

    Full text link
    We prove two distinct and natural refinements of a recent breakthrough result of Molloy (and a follow-up work of Bernshteyn) on the (list) chromatic number of triangle-free graphs. In both our results, we permit the amount of colour made available to vertices of lower degree to be accordingly lower. One result concerns list colouring and correspondence colouring, while the other concerns fractional colouring. Our proof of the second illustrates the use of the hard-core model to prove a Johansson-type result, which may be of independent interest.Comment: 16 pages; v2 includes minor corrections after review; to appear in Random Structures & Algorithm

    Domain-size control by global feedback in bistable systems

    Full text link
    We study domain structures in bistable systems such as the Ginzburg-Landau equation. The size of domains can be controlled by a global negative feedback. The domain-size control is applied for a localized spiral pattern

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Diffusion-induced vortex filament instability in 3-dimensional excitable media

    Full text link
    We studied the stability of linear vortex filaments in 3-dimensional (3D) excitable media, using both analytical and numerical methods. We found an intrinsic 3D instability of vortex filaments that is diffusion-induced, and is due to the slower diffusion of the inhibitor. This instability can result either in a single helical filament or in chaotic scroll breakup, depending on the specific kinetic model. When the 2-dimensional dynamics were in the chaotic regime, filament instability occurred via on-off intermittency, a failure of chaos synchronization in the third dimension.Comment: 5 pages, 5 figures, to appear in PRL (September, 1999

    Theory of Spike Spiral Waves in a Reaction-Diffusion System

    Full text link
    We discovered a new type of spiral wave solutions in reaction-diffusion systems --- spike spiral wave, which significantly differs from spiral waves observed in FitzHugh-Nagumo-type models. We present an asymptotic theory of these waves in Gray-Scott model. We derive the kinematic relations describing the shape of this spiral and find the dependence of its main parameters on the control parameters. The theory does not rely on the specific features of Gray-Scott model and thus is expected to be applicable to a broad range of reaction-diffusion systems.Comment: 4 pages (REVTeX), 2 figures (postscript), submitted to Phys. Rev. Let

    Buckling of scroll waves

    Get PDF
    A scroll wave in a sufficiently thin layer of an excitable medium with negative filament tension can be stable nevertheless due to filament rigidity. Above a certain critical thickness of the medium, such scroll wave will have a tendency to deform into a buckled, precessing state. Experimentally this will be seen as meandering of the spiral wave on the surface, the amplitude of which grows with the thickness of the layer, until a break-up to scroll wave turbulence happens. We present a simplified theory for this phenomenon and illustrate it with numerical examples.Comment: 4 pages main text + 5 pages appendix, 4+2 figures and a movie, as accepted by Phys Rev Letters 2012/09/2

    The study of TIM polymer composite materials thermal conductivity

    Full text link
    A recent trend in electronic technology deals with a sharp performance increase within decrease dimensions and mass of devices. High-performance thermal interface materials (TIM) primarily thermal pastes are indispensable to application. A number of filler materials: ceramics (aluminum nitride, silicon carbide, alumina) metals (aluminum, copper) and graphite were considered to apply. The data containing average particles size, specific surface area, and maximal volume and mass fraction for various materials was obtained. The thermal conductivity of samples with aluminum and graphite dramatically exceed values obtained within mathematical models' calculation. The highest thermal conductivity values were obtained for SiC (1.37 W/(m·K)), AlN (1.09 W/(m·K)), C (2.85 W/(m·K)) and Al (1.20 W/(m·K)), that mad the mentioned above materials the most promising for high-performance thermal pastes. © 2019 Author(s)

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models
    corecore