226 research outputs found

    The impact of induction chemotherapy on the outcome of second-line therapy with pemetrexed or docetaxel in patients with advanced non-small-cell lung cancer

    Get PDF
    Background: Using data from a large phase III study of previously treated advanced non-small-cell lung cancer (NSCLC) that showed similar efficacy for pemetrexed and docetaxel, this retrospective analysis evaluates the impact of first-line chemotherapy on the outcome of second-line chemotherapy. Patients and methods: In all, 571 patients with advanced NSCLC were randomly assigned to receive pemetrexed 500 mg/m2 or docetaxel 75 mg/m2 on day 1 of a 21-day cycle. Comparisons were made based on type of first-line therapy [gemcitabine + platinum (GP), taxane + platinum (TP), or other therapies (OT)], response to initial therapy, time since initial therapy, and clinical characteristics. The two second-line treatment groups were pooled for this analysis due to similar efficacy and were assumed to have no interaction with the first-line therapies. Results: Baseline characteristics were generally balanced. By multivariate analysis, gender, stage at diagnosis, performance status (PS), and best response to first-line therapy significantly influenced overall survival (OS). Additional factors by univariate analysis, histology, and time elapsed from first- to second-line therapy significantly influenced OS. Conclusions: Future trials in the second-line setting should stratify patients by gender, stage at diagnosis, PS, and best response to first-line therap

    Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    Get PDF
    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn´s magnetosphere influences Titan´s ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan´s ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan´s ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from 200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn´s nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan´s ionosphere against the dynamic pressure and energetic particle pressure in Saturn´s magnetosphere.Fil: Edberg, N. J. T.. University of Iowa; Estados Unidos. Swedish Institute of Space Physics; SueciaFil: Andrews, D. J.. Swedish Institute of Space Physics; SueciaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gurnett, D. A.. University of Iowa; Estados UnidosFil: Holmberg, M. K. G.. Swedish Institute of Space Physics; SueciaFil: Jackman, C. M.. University Of Southampton; Reino UnidoFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Menietti, J. D.. University Of Iowa; Estados UnidosFil: Opgenoorth, H. J.. Swedish Institute of Space Physics; SueciaFil: Shebanits, O.. Swedish Institute of Space Physics; SueciaFil: Vigren, E.. Swedish Institute of Space Physics; SueciaFil: Wahlund, J. E.. Swedish Institute of Space Physics; Sueci

    Skeletal Protection and Promotion of Microbiome Diversity by Dietary Boosting of the Endogenous Antioxidant Response

    Get PDF
    There is an unmet need for interventions with better compliance that prevent the adverse effects of sex steroid deficiency on the musculoskeletal system. We identified a blueberry cultivar (Montgomerym [Mont]) that added to the diet protects female mice from musculoskeletal loss and body weight changes induced by ovariectomy. Mont, but not other blueberries, increased the endogenous antioxidant response by bypassing the traditional antioxidant transcription factor Nrf2 and without activating estrogen receptor canonical signaling. Remarkably, Mont did not protect the male skeleton from androgen-induced bone loss. Moreover, Mont increased the variety of bacterial communities in the gut microbiome (α-diversity) more in female than in male mice; shifted the phylogenetic relatedness of bacterial communities (β-diversity) further in females than males; and increased the prevalence of the taxon Ruminococcus1 in females but not males. Therefore, this nonpharmacologic intervention (i) protects from estrogen but not androgen deficiency; (ii) preserves bone, skeletal muscle, and body composition; (iii) elicits antioxidant defense responses independently of classical antioxidant/estrogenic signaling; and (iv) increases gut microbiome diversity toward a healthier signature. These findings highlight the impact of nutrition on musculoskeletal and gut microbiome homeostasis and support the precision medicine principle of tailoring dietary interventions to patient individualities, like sex.Fil: Sato, Amy Y.. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: Pellegrini, Gretel Gisela. Indiana University. School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Cregor, Meloney. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: McAndrews, Kevin. Indiana University. School of Medicine; Estados UnidosFil: Choi, Roy B. Indiana University. School of Medicine; Estados UnidosFil: Maiz, Maria. Purdue University; Estados UnidosFil: Johnson, Olivia. Indiana University. School of Medicine; Estados UnidosFil: McCabe, Linda D.. Purdue University; Estados UnidosFil: McCabe, George P.. Purdue University; Estados UnidosFil: Ferruzzi, Mario G.. North Carolina State University; Estados UnidosFil: Lila, Mary Ann. North Carolina State University; Estados UnidosFil: Peacock, Munro. Indiana University. School of Medicine; Estados UnidosFil: Burr, David B.. Indiana University. School of Medicine; Estados UnidosFil: Nakatsu, Cindy H.. Purdue University; Estados UnidosFil: Weaver, Connie M.. Purdue University; Estados UnidosFil: Bellido, Teresita. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados Unido

    Literature Triage and Indexing in the Mouse Genome Informatics (MGI) Group

    Get PDF
    The Mouse Genome Informatics (MGI; "http://www.informatics.jax.org":http://www.informatics.jax.org) group is comprised of several collaborating projects including the Mouse Genome Database (MGD) Project, the Gene Expression Database (GXD) Project, the Mouse Tumor Biology (MTB) Database Project, and the Gene Ontology (GO) Project. Literature identification and collection is performed cooperatively amongst the groups.

In recent years many institutional libraries have transitioned from a focus largely on print holdings to one of electronic access to journals. This change has necessitated adaptation on the part of the MGI curatorial group. Whereas the majority of journals covered by the group used to be surveyed in paper form, those journals are now surveyed electronically. Approximately 160 journals have been identified as those most relevant to the various database groups. Each curator in the group has the responsibility of scanning several journals for articles relevant to any of the database projects. Articles chosen via this process are marked as to their potential significance for various projects. Each article is catalogued in a Master Bibliography section of the MGI database system and annotated to the database sections for which it has been identified as relevant. A secondary triage process allows curators from each group to scan the chosen articles and mark ones desired for their project if such annotation has been missed on the initial scan.

Once articles have been identified for each database project a variety of processes are implemented to further categorize and index data from those articles. For example, the Alleles and Phenotype section of the MGD database indexes each article marked for MGD and in this indexing process they identify each mouse gene and allele examined in the article. The GXD database indexing process has a different focus. In this case articles are indexed with regard to the stage of development used in the study as well as the assay technique used. In each case the indexing gives an overview of the data held in the article and assists in the more extensive curation performed in the following step of the curation process. Indexing also provides each group with valuable information used to prioritize and streamline the overall curation process.

The MGI projects are supported by NHGRI grants HG000330, HG00273, and HG003622, NICHD grant HD033745, and NCI grant CA089713
    • …
    corecore