246 research outputs found

    Antibiotic prophylaxis is associated with subsequent resistant infections in children with an initial extended-spectrum-cephalosporin-resistant Enterobacteriaceae infection

    Get PDF
    ABSTRACT The objective of this study was to assess the association between previous antibiotic use, particularly long-term prophylaxis, and the occurrence of subsequent resistant infections in children with index infections due to extended-spectrum-cephalosporin-resistant Enterobacteriaceae . We also investigated the concordance of the index and subsequent isolates. Extended-spectrum-cephalosporin-resistant Escherichia coli and Klebsiella spp. isolated from normally sterile sites of patients aged &lt;22 years were collected along with associated clinical data from four freestanding pediatric centers. Subsequent isolates were categorized as concordant if the species, resistance determinants, and fumC-fimH ( E. coli ) or tonB ( Klebsiella pneumoniae ) type were identical to those of the index isolate. In total, 323 patients had 396 resistant isolates; 45 (14%) patients had ≥1 subsequent resistant infection, totaling 73 subsequent resistant isolates. The median time between the index and first subsequent infections was 123 (interquartile range, 43 to 225) days. In multivariable Cox proportional hazards analyses, patients were 2.07 times as likely to have a subsequent resistant infection (95% confidence interval, 1.11 to 3.87) if they received prophylaxis in the 30 days prior to the index infection. In 26 (58%) patients, all subsequent isolates were concordant with their index isolate, and 7 (16%) additional patients had at least 1 concordant subsequent isolate. In 12 of 17 (71%) patients with E. coli sequence type 131 (ST131)-associated type 40-30, all subsequent isolates were concordant. Subsequent extended-spectrum-cephalosporin-resistant infections are relatively frequent and are most commonly due to bacterial strains concordant with the index isolate. Further study is needed to assess the role prophylaxis plays in these resistant infections. </jats:p

    The current state of antifungal stewardship among pediatric antimicrobial stewardship programs

    Get PDF
    OBJECTIVE: To characterize the current state of antifungal stewardship practices and perceptions of antifungal use among pediatric antimicrobial stewardship programs (ASPs). DESIGN: We developed and distributed an electronic survey, which included 17 closed-ended questions about institutional antifungal stewardship practices and perceptions, among pediatric ASPs. PARTICIPANTS: ASP physicians and pharmacists of 74 hospitals participating in the multicenter Sharing Antimicrobial Reports for Pediatric Stewardship (SHARPS) Collaborative. RESULTS: We sent surveys to 74 hospitals and received 68 unique responses, for a response rate of 92%. Overall, 63 of 68 the respondent ASPs (93%) reported that they conduct 1 or more antifungal stewardship activities. Of these 68 hospital ASPs, 43 (63%) perform prospective audit and feedback (PAF) of antifungals. The most common reasons reported for not performing PAF of antifungals were not enough time or resources (19 of 25, 76%) and minimal institutional antifungal use (6 of 25, 24%). Also, 52 hospitals (76%) require preauthorization for 1 or more antifungal agents. The most commonly restricted antifungals were isavuconazole (42 of 52 hospitals, 80%) and posaconazole (39 of 52 hospitals, 75%). Furthermore, 33 ASPs (48%) agreed or strongly agreed that antifungals are inappropriately used at their institution, and only 25 of 68 (37%) of ASPs felt very confident making recommendations about antifungals. CONCLUSIONS: Most pediatric ASPs steward antifungals, but the strategies employed are highly variable across surveyed institutions. Although nearly half of respondents identified inappropriate antifungal use as a problem at their institution, most ASPs do not feel confident making recommendations about antifungals. Future studies are needed to determine the rate of inappropriate antifungal use and the best antifungal stewardship strategies

    Characteristics of antifungal utilization for hospitalized children in the United States

    Get PDF
    OBJECTIVE: To characterize antifungal prescribing patterns, including the indication for antifungal use, in hospitalized children across the United States. DESIGN: We analyzed antifungal prescribing data from 32 hospitals that participated in the SHARPS Antibiotic Resistance, Prescribing, and Efficacy among Children (SHARPEC) study, a cross-sectional point-prevalence survey conducted between June 2016 and December 2017. METHODS: Inpatients aged \u3c18 years with an active systemic antifungal order were included in the analysis. We classified antifungal prescribing by indication (ie, prophylaxis, empiric, targeted), and we compared the proportion of patients in each category based on patient and antifungal characteristics. RESULTS: Among 34,927 surveyed patients, 2,095 (6%) received at least 1 systemic antifungal and there were 2,207 antifungal prescriptions. Most patients had an underlying oncology or bone marrow transplant diagnosis (57%) or were premature (13%). The most prescribed antifungal was fluconazole (48%) and the most common indication for antifungal use was prophylaxis (64%). Of 2,095 patients receiving antifungals, 79 (4%) were prescribed \u3e1 antifungal, most often as targeted therapy (48%). The antifungal prescribing rate ranged from 13.6 to 131.2 antifungals per 1,000 patients across hospitals ( CONCLUSIONS: Most antifungal use in hospitalized children was for prophylaxis, and the rate of antifungal prescribing varied significantly across hospitals. Potential targets for antifungal stewardship efforts include high-risk, high-utilization populations, such as oncology and bone marrow transplant patients, and specific patterns of utilization, including prophylactic and combination antifungal therapy

    Previous antibiotic exposure increases risk of infection with extended-spectrum-β-lactamase- and AmpC-producing Escherichia coli and Klebsiella pneumoniae in pediatric patients

    Get PDF
    The objective of this study was to determine whether antibiotic exposure is associated with extended-spectrum-beta-lactamase- or AmpC-producing Escherichia coli or Klebsiella pneumoniae infections in children. We collected extended-spectrum-beta-lactamase- or AmpC-producing E. coli or K. pneumoniae isolates and same-species susceptible controls from normally sterile sites of patients aged ≤21 years, along with associated clinical data, at four free-standing pediatric centers. After controlling for potential confounders, the relative risk of having an extended-spectrum-beta-lactamase-producing isolate rather than a susceptible isolate was 2.2 times higher (95% confidence interval [CI], 1.49 to 3.35) among those with antibiotic exposure in the 30 days prior to infection than in those with no antibiotic exposure. The results were similar when analyses were limited to exposure to third-generation cephalosporins, other broad-spectrum beta-lactams, or trimethoprim-sulfamethoxazole. Conversely, the relative risk of having an AmpC-producing versus a susceptible isolate was not significantly elevated with any antibiotic exposure in the 30 days prior to infection (adjusted relative risk ratio, 1.12; 95% CI, 0.65 to 1.91). However, when examining subgroups of antibiotics, the relative risk of having an AmpC-producing isolate was higher for patients with exposure to third-generation cephalosporins (adjusted relative risk ratio, 4.48; 95% CI, 1.75 to 11.43). Dose-response relationships between antibiotic exposure and extended-spectrum-beta-lactamase-producing or AmpC-producing isolates were not demonstrated. These results reinforce the need to study and implement pediatric antimicrobial stewardship strategies, and they indicate that epidemiological studies of third-generation cephalosporin-resistant E. coli and K. pneumoniae isolates should include resistance mechanisms when possible

    The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study

    Get PDF
    &lt;p&gt;Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.&lt;/p&gt; &lt;p&gt;Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.&lt;/p&gt; &lt;p&gt;Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).&lt;/p&gt; &lt;p&gt;Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.&lt;/p&gt

    Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort

    Get PDF
    BACKGROUND The effects of antibiotics on infant gut microbiota are unclear. We hypothesized that the use of common antibiotics results in long-term aberration in gut microbiota. METHODS Antibiotic-naive infants were prospectively recruited when hospitalized because of a respiratory syncytial virus infection. Composition of fecal microbiota was compared between those receiving antibiotics during follow-up (prescribed at clinicians' discretion because of complications such as otitis media) and those with no antibiotic exposure. Fecal sampling started on day 1, then continued at 2-day intervals during the hospital stay, and at 1, 3 and 6 months at home. RESULTS One hundred and sixty-three fecal samples from 40 patients (median age 2.3 months at baseline; 22 exposed to antibiotics) were available for microbiota analyses. A single course of amoxicillin or macrolide resulted in aberration of infant microbiota characterized by variation in the abundance of bifidobacteria, enterobacteria and clostridia, lasting for several months. Recovery from the antibiotics was associated with an increase in clostridia. Occasionally, antibiotic use resulted in microbiota profiles associated with inflammatory conditions. CONCLUSIONS Antibiotic use in infants modifies especially bifidobacterial levels. Further studies are warranted whether administration of bifidobacteria will provide health benefits by normalizing the microbiota in infants receiving antibiotics.Peer reviewe

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    Site-directed mutations in the C-terminal extension of human aB-Crystalline affect chaperone function and block amyloid fibril formation

    Get PDF
    Copyright: 2007 Treweek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background. Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including aB-crystallin, play a role in the prevention of protein deposition. Methodology/Principal Findings. A series of site-directed mutants of the human molecular chaperone, aBcrystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of aB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of aB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. Conclusions/Significance. Together, our results highlight the important role of the C-terminal region of aB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify aB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation
    corecore