1,202 research outputs found

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X10−9\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Survey strategy optimization for the Atacama Cosmology Telescope

    Get PDF
    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table

    The Halo Mass of Optically Luminous Quasars at z ,F≈ ,F1-2 Measured via Gravitational Deflection of the Cosmic Microwave Background

    Get PDF
    © 2019. The American Astronomical Society. All rights reserved.We measure the average deflection of cosmic microwave background photons by quasars at 〈Z〉= 1.7. Our sample is selected from the Sloan Digital Sky Survey to cover the redshift range 0.9 ≤z≤2.2 with absolute i-band magnitudes of M i ≤-24 (K-corrected to z = 2). A stack of nearly 200,000 targets reveals an 8δ detection of Planck's estimate of the lensing convergence toward the quasars. We fit the signal with a model comprising a Navarro-Frenk-White density profile and a two-halo term accounting for correlated large-scale structure, which dominates the observed signal. The best-fitting model is described by an average halo mass log 10 (M h h -1 M)12.6 ±0.2 = and linear bias b=2.7±0.3 at 〈Z 〉= 1.7, in excellent agreement with clustering studies. We also report a hint, at a 90% confidence level, of a correlation between the convergence amplitude and luminosity, indicating that quasars brighter than Mi≲ -26 reside in halos of typical mass M h ≈ 10 13 h -1 M, scaling roughly as M h ∞ L opt 3/4 at M i ≲-24 mag, in good agreement with physically motivated quasar demography models. Although we acknowledge that this luminosity dependence is a marginal result, the observed Mh-L opt relationship could be interpreted as a reflection of the cutoff in the distribution of black hole accretion rates toward high Eddington ratios: the weak trend of Mh with Lopt observed at low luminosity becomes stronger for the most powerful quasars, which tend to be accreting close to the Eddington limit.Peer reviewedFinal Accepted Versio

    The importance of protein sources to support muscle anabolism in cancer: an expert group opinion

    Get PDF
    This opinion paper presents a short review of the potential impact of protein on muscle anabolism in cancer, which is associated with better patient outcomes. Protein source is a topic of interest for patients and clinicians, partly due to recent emphasis on the supposed non-beneficial effect of proteins; therefore, misconceptions involving animal-based (e.g., meat, fish, dairy) and plant-based (e.g., legumes) proteins in cancer are acknowledged and addressed. Although the optimal dietary amino acid composition to support muscle health in cancer is yet to be established, animal-based proteins have a composition that offers superior anabolic potential, compared to plant-derived proteins. Thus, animal-based foods should represent the majority (i.e., ≥65%) of protein intake during active cancer treatment. A diet rich in plant-derived proteins may support muscle anabolism in cancer, albeit requiring a larger quantity of protein to fulfill the optimal amino acid intake. We caution that translating dietary recommendations for cancer prevention to cancer treatment may be inadequate to support the pro-inflammatory and catabolic nature of the disease. We further caution against initiating an exclusively plant-based (i.e., vegan) diet upon a diagnosis of cancer, given the presence of elevated protein requirements and risk of inadequate protein intake to support muscle anabolism. Amino acid combination and the long-term sustainability of a dietary pattern void of animal-based foods requires careful and laborious management of protein intake for patients with cancer. Ultimately, a dietary amino acid composition that promotes muscle anabolism is optimally obtained through combination of animal- and plant-based protein sources.info:eu-repo/semantics/publishedVersio

    A CMB lensing mass map and its correlation with the cosmic infrared background

    Full text link
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~ 4 sigma level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees at wavelengths of 500, 350, and 250 microns. We show that these submillimeter-wavelength (submm) maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ

    A Direct Measurement of the Linear Bias of Mid-infrared-selected Quasars at z ap 1 Using Cosmic Microwave Background Lensing

    Get PDF
    We measure the cross-power spectrum of the projected mass density as traced by the convergence of the cosmic microwave background lensing field from the South Pole Telescope (SPT) and a sample of Type 1 and 2 (unobscured and obscured) quasars at langzrang ~ 1 selected with the Wide-field Infrared Survey Explorer, over 2500 deg2. The cross-power spectrum is detected at ≈7σ, and we measure a linear bias b = 1.61 ± 0.22, consistent with clustering analyses. Using an independent lensing map, derived from Planck observations, to measure the cross-spectrum, we find excellent agreement with the SPT analysis. The bias of the combined sample of Type 1 and 2 quasars determined in this work is similar to that previously determined for Type 1 quasars alone; we conclude that obscured and unobscured quasars trace the matter field in a similar way. This result has implications for our understanding of quasar unification and evolution schemes.Peer reviewe

    A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey

    Full text link
    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg2^2 of sky with arcminute resolution at 150 150\,GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650<ℓ<3000650<\ell<3000. We fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints; in particular, the constraint on θs\theta_s tightens by a factor of 2.7. The impact of gravitational lensing is detected at 8.1 σ8.1\, \sigma, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be Ωk=−0.003−0.018+0.014\Omega_k=-0.003^{+0.014}_{-0.018}. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be ns=0.9623±0.0097n_s=0.9623 \pm 0.0097 in the LCDM model, a 3.9 σ3.9\,\sigma preference for a scale-dependent spectrum with ns<1n_s<1. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio rr and nsn_s in large-scale CMB measurements, leading to an upper limit of r<0.18r<0.18 (95%,C.L.) in the LCDM+rr model. Adding low-redshift measurements of the Hubble constant (H0H_0) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+H0H_0+BAO constrains ns=0.9538±0.0081n_s=0.9538 \pm 0.0081 in the LCDM model, a 5.7 σ5.7\,\sigma detection of ns<1n_s < 1, ... [abridged]Comment: 21 pages, 10 figures. Replaced with version accepted by ApJ. Data products are available at http://pole.uchicago.edu/public/data/story12

    Constraints on the CMB Temperature Evolution using Multi-Band Measurements of the Sunyaev Zel'dovich Effect with the South Pole Telescope

    Full text link
    The adiabatic evolution of the temperature of the cosmic microwave background (CMB) is a key prediction of standard cosmology. We study deviations from the expected adiabatic evolution of the CMB temperature of the form T(z)=T0(1+z)1−αT(z) =T_0(1+z)^{1-\alpha} using measurements of the spectrum of the Sunyaev Zel'dovich Effect with the South Pole Telescope (SPT). We present a method for using the ratio of the Sunyaev Zel'dovich signal measured at 95 and 150 GHz in the SPT data to constrain the temperature of the CMB. We demonstrate that this approach provides unbiased results using mock observations of clusters from a new set of hydrodynamical simulations. We apply this method to a sample of 158 SPT-selected clusters, spanning the redshift range 0.05<z<1.350.05 < z < 1.35, and measure α=0.017−0.028+0.030\alpha = 0.017^{+0.030}_{-0.028}, consistent with the standard model prediction of α=0\alpha=0. In combination with other published results, we constrain α=0.011±0.016\alpha = 0.011 \pm 0.016, an improvement of ∼20%\sim 20\% over published constraints. This measurement also provides a strong constraint on the effective equation of state in models of decaying dark energy weff=−0.987−0.017+0.016w_\mathrm{eff} = -0.987^{+0.016}_{-0.017}.Comment: Submitted to MNRAS Letter
    • …
    corecore