109 research outputs found

    Langley's CSI evolutionary model: Phase O

    Get PDF
    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components

    p21-activated kinase 1: PAK'ed with potential

    Get PDF
    The p21-activated kinases (PAKs) are central players in growth factor signaling networks and morphogenetic processes that control proliferation, cell polarity, invasion and actin cytoskeleton organization. This raises the possibility that interfering with PAK activity may produce significant anti-tumor activity. In this perspective, we summarize recent data concerning the contribution of the PAK family member, PAK1, in growth factor signaling and tumorigenesis. We further discuss mechanisms by which inhibition of PAK1 can arrest tumor growth and promote cell apoptosis, and the types of cancers in which PAK1 inhibition may hold promise

    Z2_2 topology and superconductivity from symmetry lowering of a 3D Dirac Metal Au2_2Pb

    Full text link
    3D Dirac semi-metals (DSMs) are materials that have massless Dirac electrons and exhibit exotic physical properties It has been suggested that structurally distorting a DSM can create a Topological Insulator (TI), but this has not yet been experimentally verified. Furthermore, quasiparticle excitations known as Majorana Fermions have been theoretically proposed to exist in materials that exhibit superconductivity and topological surface states. Here we show that the cubic Laves phase Au2_2Pb has a bulk Dirac cone above 100 K that gaps out upon cooling at a structural phase transition to create a topologically non trivial phase that superconducts below 1.2 K. The nontrivial Z2_2 = -1 invariant in the low temperature phase indicates that Au2_2Pb in its superconducting state must have topological surface states. These characteristics make Au2_2Pb a unique platform for studying the transition between bulk Dirac electrons and topological surface states as well as studying the interaction of superconductivity with topological surface states

    Human lung cancer cells express functionally active Toll-like receptor 9

    Get PDF
    BACKGROUND: CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology. METHODS: The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system. RESULTS: We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis. CONCLUSIONS: Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology

    A Spaetzle-like role for nerve growth factor beta in vertebrate immunity to Staphylococcus aureus

    Get PDF
    Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates. Deleterious mutations of either human NGFβ or its high-affinity receptor tropomyosin-related kinase receptor A (TRKA) were associated with severe S. aureus infections. NGFβ was released by macrophages in response to S. aureus exoproteins through activation of the NOD-like receptors NLRP3 and NLRC4 and enhanced phagocytosis and superoxide-dependent killing, stimulated proinflammatory cytokine production, and promoted calcium-dependent neutrophil recruitment. TrkA knockdown in zebrafish increased susceptibility to S. aureus infection, confirming an evolutionarily conserved role for NGFβ-TRKA signaling in pathogen-specific host immunity

    Drosophila learning and memory: recent progress and new approaches

    No full text
    The processes of learning and memory have traditionally been studied in large experimental organisms (Aplysia, mice, rats and humans), where well-characterized behaviors are easily tested. Although Drosophila is one of the most experimentally tractable organisms, it has only recently joined the others as a model organism for learning and memory. Drosophila behavior has been studied for over 20 years; however, most of the work in the learning and memory field has focused on initial learning, because establishing memory in Drosophila has not been as straightforward as in other organisms. A major recent advance in this field has been the development of a training protocol that induces long-term memory in files. This made possible experiments that implicated the Drosophila CREB gene as a critical component in the consolidation of long-term memory, and paves the way for future experiments utilizing the well developed tools in Drosophila. This review will briefly summarize what is known in the field of Drosophila learning and memory to date, and discuss why the unique aspects of this field make traditional approaches difficult and reward the use of alternative paths of experimentation

    The Drosophila dCREB2 gene affects the circadian clock

    Get PDF
    We report the role of dCREB2, the Drosophila homolog of CREB/CREM, in circadian rhythms. dCREB2 activity cycles with a 24 hr rhythm in flies, both in a light:dark cycle and in constant darkness. A mutation in dCREB2 shortens circadian locomotor rhythm in flies and dampens the oscillation of period, a known clock gene. Cycling dCREB2 activity is abolished in a period mutant, indicating that dCREB2 and Period affect each other and suggesting that the two genes participate in the same regulatory feedback loop. We propose that dCREB2 supports cycling of the Period/Timeless oscillator. These findings support CREB's role in mediating adaptive behavioral responses to a variey of environmental stimuli (stress, growth factors, drug addiction, circadian rhythms, and memory formation) in mammals and long-term memory formation and circadian rhythms in Drosophila

    Regulation of leukocyte adhesion molecule-1 (TQ1, Leu-8) expression and shedding by normal and malignant cells

    No full text
    The human leukocyte adhesion molecule-1 (LAM-1, TQ1, Leu-8) is involved in the binding of human leukocytes to high endothelial venules (HEV) of peripheral lymph nodes (LN). The regulation of LAM-1 expression is unique in that leukocyte stimulation induces a rapid down-modulation of LAM-1 from the cell surface. In this study, the regulation and function of LAM-1 was studied in detail in normal lymphocytes and compared with the LAM-1 of malignant leukocytes. Modulation of LAM-1 from the cell surface occurred concomitantly with the appearance of LAM-1 in the culture medium indicating that LAM-1 is cleaved from the cell surface. Shedding of LAM-1 was decreased in the presence of protein kinase C (PKC) inhibitors. As with normal lymphocytes, cells transfected with the LAM-1 cDNA and chronic lymphocytic leukemia (CLL) cells also shed LAM-1 following phorbol myristate acetate (PMA) exposure. CLL cells expressed the same Mr LAM-1 protein as normal lymphocytes and LAM-1+ CLL cells were able to specifically bind to HEV. In addition, normal lymphocytes and LAM-1+ CLL cells were capable of binding polyphosphomonester core polysaccharide (PPME) derived from yeast cell wall, a carbohydrate which mimics an essential component of the natural ligand for LAM-1, and PPME and HEV binding was specifically blocked by a new monoclonal antibody (mAb) reactive with LAM-1. The expression of LAM-1 and other adhesion molecules was examined on cells of 118 hematopoietic malignancies. LAM-1 was most frequently expressed on CLL and follicular or diffuse small cleaved cell lymphomas, whereas most other malignancies were LAM-1-. Thus, most CLL cells and some non-Hodgkin's lymphoma cells express a functionally active LAM-1 molecule which may correlate with their capacity to migrate through the circulation and disseminate into peripheral LN
    corecore