62,716 research outputs found
Stationary device produces homogeneous mixture of fluids
Stationary device produces a homogeneous mixture of two or more one-phase or two-phase fluids. The device contains two concentric flow guides with helical passageways through which the fluids are forced into turbulent flow by the system pressure differential
Organic barley producers' desired qualities for crop improvement
Barley fits well into many different organic farming systems. It can be grown as either a winter or spring annual crop in many temperate regions. Barley can be used for food, malting, or animal feed, providing growers with diverse marketing opportunities. Despite its advantages, many organic farmers in the USA have not adopted barley as a regular crop in their rotation. Researchers surveyed organic barley producers to discover what they considered to be the main obstacles to growing barley. The primary obstacles identified were limited markets and price. Breeding and development of high-quality barley suitable for organic systems and specialty markets may be a way to expand markets and secure a better price. Farmers identified yield as the most important agronomic trait of interest, but other traits such as nutritional quality were also highly ranked. Naked (hull-less) barley bred for multi-use quality is a possible alternative that allows organic farmers to sell into multiple markets. Most respondents expressed interest in the development of such varieties suitable for organic farming conditions. The researchers conducted follow-up interviews to obtain detailed information on how barley is used in organic farming systems, production practices, costs of production, and what traits farmers would like to see breeders focus on
Improving Barley for Organic Producers: What Do Organic Producers Want?
Researchers surveyed organic barley producers in order to find out how many acres they are growing, what varieties they grow, what markets they are growing barley for, whether they receive a price premium for organic barley, whether they are growing or would be interested in growing multi-use naked barley, what production challenges they face, and what traits they would like to see improved
The turing model comes of molecular age
Molecular analysis of hair follicle formation provide evidence to support the most well-known mathematical model for biological pattern formation
Effective String Theory of Vortices and Regge Trajectories
Starting from a field theory containing classical vortex solutions, we obtain
an effective string theory of these vortices as a path integral over the two
transverse degrees of freedom of the string. We carry out a semiclassical
expansion of this effective theory, and use it to obtain corrections to Regge
trajectories due to string fluctuations.Comment: 27 pages, revtex, 3 figures, corrected an error with the cutoff in
appendix E (was previously D), added more discussion of Fig. 3, moved some
material in section 9 to a new appendi
Comment on ``Intermittent Synchronization in a Pair of Coupled Chaotic Pendula"
The main aim of this comment is to emphasize that the conditional Lyapunov
exponents play an important role in distinguishing between intermittent and
persistent synchronization, when the analytic criteria for asymptotic stability
are not uniformly obeyed.Comment: 2 pages, RevTeX 4, 1 EPS figur
Making use of geometrical invariants in black hole collisions
We consider curvature invariants in the context of black hole collision
simulations. In particular, we propose a simple and elegant combination of the
Weyl invariants I and J, the {\sl speciality index} . In the context
of black hole perturbations provides a measure of the size of the
distortions from an ideal Kerr black hole spacetime. Explicit calculations in
well-known examples of axisymmetric black hole collisions demonstrate that this
quantity may serve as a useful tool for predicting in which cases perturbative
dynamics provide an accurate estimate of the radiation waveform and energy.
This makes particularly suited to studying the transition from
nonlinear to linear dynamics and for invariant interpretation of numerical
results.Comment: 4 pages, 3 eps figures, Revte
The Chemical Evolution of the Universe I: High Column Density Absorbers
We construct a simple, robust model of the chemical evolution of galaxies
from high to low redshift, and apply it to published observations of damped
Lyman-alpha quasar absorption line systems (DLAs). The elementary model assumes
quiescent star formation and isolated galaxies (no interactions, mergers or gas
flows). We consider the influence of dust and chemical gradients in the
galaxies, and hence explore the selection effects in quasar surveys. We fit
individual DLA systems to predict some observable properties of the absorbing
galaxies, and also indicate the expected redshift behaviour of chemical element
ratios involving nucleosynthetic time delays.
Despite its simplicity, our `monolithic collapse' model gives a good account
of the distribution and evolution of the metallicity and column density of
DLAs, and of the evolution of the global star formation rate and gas density
below redshifts z 3. However, from the comparison of DLA observations with our
model, it is clear that star formation rates at higher redshifts (z>3) are
enhanced. Galaxy interactions and mergers, and gas flows very probably play a
major role.Comment: 36 pages, 11 figures; accepted by MNRA
Reptile scale paradigm: Evo-Devo, pattern formation and regeneration
The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments
- …