41 research outputs found

    Human AQP1 Is a Constitutively Open Channel that Closes by a Membrane-Tension-Mediated Mechanism

    Get PDF
    AbstractThis work presents experimental results combined with model-dependent predictions regarding the osmotic-permeability regulation of human aquaporin 1 (hAQP1) expressed in Xenopus oocyte membranes. Membrane elastic properties were studied under fully controlled conditions to obtain a function that relates internal volume and pressure. This function was used to design a model in which osmotic permeability could be studied as a pressure-dependent variable. The model states that hAQP1 closes with membrane-tension increments. It is important to emphasize that the only parameter of the model is the initial osmotic permeability coefficient, which was obtained by model-dependent fitting. The model was contrasted with experimental records from emptied-out Xenopus laevis oocytes expressing hAQP1. Simulated results reproduce and predict volume changes in high-water-permeability membranes under hypoosmotic gradients of different magnitude, as well as under consecutive hypo- and hyperosmotic conditions. In all cases, the simulated permeability coefficients are similar to experimental values. Predicted pressure, volume, and permeability changes indicate that hAQP1 water channels can transit from a high-water-permeability state to a closed state. This behavior is reversible and occurs in a cooperative manner among monomers. We conclude that hAQP1 is a constitutively open channel that closes mediated by membrane-tension increments

    Rectification of the Water Permeability in COS-7 Cells at 22, 10 and 0°C

    Get PDF
    The osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, Lp, the non-osmotic volume, Vb, and the Arrhenius activation energy, Ea, of mammalian COS-7 cells. The ratio of Vb to the isotonic cell volume, Vc iso, was 0.29. Ea, the activation energy required for the permeation of water through the cell membrane, was 10,700, and 12,000 cal/mol under hyper- and hypotonic conditions, respectively. Average values for Lp were calculated from swell/shrink curves by using an integrated equation for Lp. The curves represented the volume changes of 358 individually measured cells, placed into solutions of nonpermeating solutes of 157 or 602 mOsm/kg (at 0, 10 or 22°C) and imaged over time. Lp estimates for all six combinations of osmolality and temperature were calculated, resulting in values of 0.11, 0.21, and 0.10 µm/min/atm for exosmotic flow and 0.79, 1.73 and 1.87 µm/min/atm for endosmotic flow (at 0, 10 and 22°C, respectively). The unexpected finding of several fold higher Lp values for endosmotic flow indicates highly asymmetric membrane permeability for water in COS-7. This phenomenon is known as rectification and has mainly been reported for plant cell, but only rarely for animal cells. Although the mechanism underlying the strong rectification found in COS-7 cells is yet unknown, it is a phenomenon of biological interest and has important practical consequences, for instance, in the development of optimal cryopreservation

    Aquaporins: important but elusive drug targets.

    Get PDF
    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators

    Aquaporin water channels in the nervous system.

    Get PDF
    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage

    Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    Get PDF
    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2-3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo , migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues

    Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports

    No full text
    T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism
    corecore