1,011 research outputs found

    A Validation Framework for the Long Term Preservation of High Energy Physics Data

    Full text link
    The study group on data preservation in high energy physics, DPHEP, is moving to a new collaboration structure, which will focus on the implementation of preservation projects, such as those described in the group's large scale report published in 2012. One such project is the development of a validation framework, which checks the compatibility of evolving computing environments and technologies with the experiments software for as long as possible, with the aim of substantially extending the lifetime of the analysis software, and hence of the usability of the data. The framework is designed to automatically test and validate the software and data of an experiment against changes and upgrades to the computing environment, as well as changes to the experiment software itself. Technically, this is realised using a framework capable of hosting a number of virtual machine images, built with different configurations of operating systems and the relevant software, including any necessary external dependencies.Comment: Proceedings of a poster presented at CHEP 2013, Amsterdam, October 14-18 201

    Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling

    Full text link
    We present experimental and modeling studies of UV nanosecond pulsed laser desorption and ablation of (111) bulk silicon. The results involve a new approach to the analysis of plume formation dynamics under high-energy photon irradiation of the semiconductor surface. Non-thermal, photo-induced desorption has been observed at low laser fluence, well below the melting threshold. Under ablation conditions, the non-thermal ions have also a high concentration. The origin of these ions is discussed on the basis of electronic excitation of Si surface states associated with the Coulomb explosion mechanism. We present a model describing dynamics of silicon target excitation, heating and harge-carrier transport

    Structure and properties of Ti/TiB metal-matrix composite after isothermal multiaxial forging

    Get PDF
    Microstructure and mechanical properties of a Ti/TiB metal-matrix composites after multiaxial forging at 850°C to the true strain " = 5:2 were studied. The composite with 17 vol.% of TiB was produced via spark plasma sintering at 1000°

    Field-Induced Gap in a Quantum Spin-1/2 Chain in a Strong Magnetic Field

    Full text link
    Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating gg-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field Hsat=48.5H_{sat}=48.5 T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field

    ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase

    Full text link
    Magnetic excitations in the strong-leg quantum spin ladder compound (C7_7H10_{10}N)2_2CuBr4_4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction

    Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin resonance

    Get PDF
    The recent discovery of skyrmions in Cu2_2OSeO3_3 has established a new platform to create and manipulate skyrmionic spin textures. We use high-field electron spin resonance (ESR) spectroscopy combining a terahertz free electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. Besides providing direct access to the long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency ESR. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra.Comment: 5 pages, 3 Figure

    Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2_2CuBr4_4

    Get PDF
    We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2_2CuBr4_4. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero-field energy gap, Δ9.5\Delta\approx9.5 K, observed in the low-temperature excitation spectrum of Cs2_2CuBr4_4 [Zvyagin et al.et~al., Phys. Rev. Lett. 112, 077206 (2014)], is present well above TNT_N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TNT_N the high-energy spin dynamics in Cs2_2CuBr4_4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.Comment: 6 pages, 9 figure
    corecore