57 research outputs found

    Genes of the RAV family control heading date and carpel development in rice

    Get PDF
    In plants, correct formation of reproductive organs is critical for successful seedset and perpetuation of the species. Plants have evolved different molecular mechanisms to coordinate flower and seed development at the proper time of the year. Among the plant-specific RELATED TO ABI3 AND VP1 (RAV) family of transcription factors, only TEMPRANILLO1 (TEM1) and TEM2 have been shown to affect reproductive development in Arabidopsis (Arabidopsis thaliana). They negatively regulate the floral transition through direct repression of FLOWERING LOCUS T and GIBBERELLIN 3-OXIDASE1/2, encoding major components of the florigen. Here we identify RAV genes from rice (Oryza sativa), and unravel their regulatory roles in key steps of reproductive development. Our data strongly suggest that, like TEMs, OsRAV9/OsTEM1 has a conserved function as a repressor of photoperiodic flowering upstream of the floral activators OsMADS14 and Hd3a, through a mechanism reminiscent of that one underlying floral transition in temperate cereals. Furthermore, OsRAV11 and OsRAV12 may have acquired a new function in the differentiation of the carpel and the control of seed size, acting downstream of floral homeotic factors. Alternatively, this function may have been lost in Arabidopsis. Our data reveal conservation of RAV gene function in the regulation of flowering time in monocotyledonous and dicotyledonous plants, but also unveil roles in the development of rice gynoecium

    Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules

    Get PDF
    In angiosperms, floral homeotic genes encoding MADS-domain transcription factors regulate the development of floral organs. Specifically, members of the SEPALLATA (SEP) and AGAMOUS (AG) subfamilies form higher-order protein complexes to control floral meristem determinacy and to specify the identity of female reproductive organs. In rice, the AG subfamily gene OsMADS13 is intimately involved in the determination of ovule identity, since knock-out mutant plants develop carpel-like structures in place of ovules, resulting in female sterility. Little is known about the regulatory pathways at the base of rice gynoecium development. To investigate molecular mechanisms acting downstream of OsMADS13, we obtained transcriptomes of immature inflorescences from wild-type and Osmads13 mutant plants. Among a total of 476 differentially expressed genes (DEGs), a substantial overlap with DEGs from the SEP-family Osmads1 mutant was found, suggesting that OsMADS1 and OsMADS13 may act on a common set of target genes. Expression studies and preliminary analyses of two up-regulated genes encoding Zinc-finger transcription factors indicated that our dataset represents a valuable resource for the identification of both OsMADS13 target genes and novel players in rice ovule development. Taken together, our study suggests that OsMADS13 is an important repressor of the carpel pathway during ovule development

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    The ins and outs of the rice AGAMOUS subfamily

    No full text
    Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis
    • …
    corecore