112 research outputs found

    Using cloud ice flux to parametrise large-scale lightning

    Get PDF
    Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007-2011 from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs) and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry climate models that use a lightning parametrisation

    Coincidence isometries of a shifted square lattice

    Full text link
    We consider the coincidence problem for the square lattice that is translated by an arbitrary vector. General results are obtained about the set of coincidence isometries and the coincidence site lattices of a shifted square lattice by identifying the square lattice with the ring of Gaussian integers. To illustrate them, we calculate the set of coincidence isometries, as well as generating functions for the number of coincidence site lattices and coincidence isometries, for specific examples.Comment: 10 pages, 1 figure; paper presented at Aperiodic 2009 (Liverpool

    Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat

    Get PDF
    A high-resolution chromosome arm-specific mapping population was used in an attempt to locate/detect gene(s)/QTL for different root traits on the short arm of rye chromosome 1 (1RS) in bread wheat. This population consisted of induced homoeologous recombinants of 1RS with 1BS, each originating from a different crossover event and distinct from all other recombinants in the proportions of rye and wheat chromatin present. It provides a simple and powerful approach to detect even small QTL effects using fewer progeny. A promising empirical Bayes method was applied to estimate additive and epistatic effects for all possible marker pairs simultaneously in a single model. This method has an advantage for QTL analysis in minimizing the error variance and detecting interaction effects between loci with no main effect. A total of 15 QTL effects, 6 additive and 9 epistatic, were detected for different traits of root length and root weight in 1RS wheat. Epistatic interactions were further partitioned into inter-genomic (wheat and rye alleles) and intra-genomic (rye–rye or wheat–wheat alleles) interactions affecting various root traits. Four common regions were identified involving all the QTL for root traits. Two regions carried QTL for almost all the root traits and were responsible for all the epistatic interactions. Evidence for inter-genomic interactions is provided. Comparison of mean values supported the QTL detection

    Simian Varicella Virus Infection of Rhesus Macaques Recapitulates Essential Features of Varicella Zoster Virus Infection in Humans

    Get PDF
    Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation

    Head, heart or checklist? How self-reported decision-making strategies change according to speciality and grade

    No full text
    Purpose: To identify and analyse variations in self-reported decision-making strategies between medical professionals of different speciality and grade. Study Design: We conducted a cross-sectional survey of doctors of different specialities and grades at St. George’s Hospital, London, UK. We administered 226 questionnaires asking participants to assign proportions of their clinical decision-making behaviour to four strategies: intuitive, analytical, rule-based, or creative. Results: We found that physicians said they used rule-based decision-making significantly more than did surgeons and anaesthetists (p=0.025) and analytical decision-making strategies significantly less (p=0.003). In addition, we found that both intuitive (p=0.0005) and analytical (p=0.0005) decisionmaking had positive associations with increasing experience, whereas rule-based decision-making was negatively associated with greater experience (p=0.0005). Conclusions: Decision-making strategies may evolve with increasing clinical experience from a predominant use of rule-based approaches toward greater use of intuitive or analytical methods depending on the familiarity and acuity of the clinical situation. Rule-based strategies remain important for delivering evidence-based care, particularly for less experienced clinicians, and for physicians more than surgeons, possibly due to the greater availability and applicability of guidelines for medical problems. Anaesthetists and intensivists tend toward more analytical decision-making than physicians; an observation which might be attributable to the greater availability and use of objective data in the care environment. As part of broader training in non-technical skills and human factors, increasing awareness amongst trainees of medical decision-making models and their potential pitfalls might contribute to reducing the burden of medical error in terms of morbidity, mortality and litigation

    Streamlined alpha‐amylase assays for wheat preharvest sprouting and late maturity alpha‐amylase detection

    No full text
    Abstract Late maturity alpha‐amylase (LMA) and preharvest sprouting (PHS) lead to elevated alpha‐amylase in wheat (Triticum aestivum L.) grain. Risk of poor end‐product quality due to elevated alpha‐amylase is detected in the wheat industry using the Hagberg–Perten falling number (FN) method. In breeding programs, selection for PHS and LMA tolerance requires higher throughput methods requiring a smaller sample size than the 7 g required for the FN method. Specifically, LMA can only be screened only using detection of alpha‐amylase activity or protein after cold treatment of individual wheat spikes at a specific stage of grain development resulting in very small samples (≤1 g). This study developed and evaluated a high throughput 96‐well method for the Phadebas alpha‐amylase enzyme assay for small wheat grain samples and compared this method to FN and the Megazyme Alpha‐Amylase SD (Sprout Damage) Assay Kit performed on the automated Awareness Technology ChemWell‐T Analyzer. In parallel, the efficacy of low‐cost small‐scale milling methods was evaluated relative to traditional larger scale mills. The Phadebas enzyme activity was highly reproducible and showed a strong correlation to the SD enzyme assay and FN method regardless of which mill was used to process the grain. The SD assay offers simpler standardization and calculation of enzyme activity, whereas the Phadebas assay offers higher sensitivity and lower expense. Both the 96‐well Phadebas and automated Megazyme SD assays are suitable for alpha‐amylase detection from small samples, and the use of low‐cost coffee grinders to process small samples did not significantly impact assay performance
    corecore