25 research outputs found

    Analysis of a two-scale system for gas-liquid reactions with non-linear Henry-type transfer

    Get PDF
    In this paper, we consider a coupled two-scale nonlinear reaction-diffusion system modelling gas-liquid reactions. The novel feature of the model is the nonlinear transmission condition between the microscopic and macroscopic concentrations, given by a nonlinear Henry-type transfer function. The solution is approximated by using a Galerkin method adapted to the multiscale form of the system. This approach leads to existence and uniqueness of the solution, and can also be used for numerical computations for a larger class of nonlinear multiscale problems

    Homogenization of a pore scale model for precipitation and dissolution in porous media

    Get PDF
    In this paper we employ homogenization techniques to provide a rigorous derivation of the Darcy scale model for precipitation and dissolution in porous media proposed in [19]. The starting point is the pore scale model in [12], which is a coupled system of evolution equations, involving a parabolic equation and an ordinary differential equation. The former models ion transport and is defined in a periodically perforated medium. It is further coupled through the boundary conditions to the latter, defined on the boundaries of the perforations and modelling the dissolution and precipitation of the precipitate. The main challenge is in dealing with the dissolution and precipitation rates, which involve a monotone but multi-valued mapping. Due to this, the micro-scale solution lacks regularity. With e being the scale parameter (the ratio between the micro scale and the macro scale length), we adopt the 2-scale framework to achieve the convergence of the homogenization procedure as e approaches zero

    Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

    Get PDF
    We propose a semi-discrete finite difference multiscale scheme for a concrete corrosion model consisting of a system of two-scale reaction-diffusion equations coupled with an ode. We prove energy and regularity estimates and use them to get the necessary compactness of the approximation estimates. Finally, we illustrate numerically the behavior of the two-scale finite difference approximation of the weak solution.Comment: 22 pages, 1 figure, submitted to Japan Journal of Industrial and Applied Mathematic

    Homogenization of a pore scale model for precipitation and dissolution in porous media

    Get PDF
    In this paper we employ homogenization techniques to provide a rigorous derivation of the Darcy scale model for precipitation and dissolution in porous media proposed in [19]. The starting point is the pore scale model in [12], which is a coupled system of evolution equations, involving a parabolic equation and an ordinary differential equation. The former models ion transport and is defined in a periodically perforated medium. It is further coupled through the boundary conditions to the latter, defined on the boundaries of the perforations and modelling the dissolution and precipitation of the precipitate. The main challenge is in dealing with the dissolution and precipitation rates, which involve a monotone but multi-valued mapping. Due to this, the micro-scale solution lacks regularity. With e being the scale parameter (the ratio between the micro scale and the macro scale length), we adopt the 2-scale framework to achieve the convergence of the homogenization procedure as e approaches zero

    Editorial (Special issue on Multiscale problems in science and technology : Challenges to mathematical analysis and perspectives)

    No full text
    This Special Issue was proposed during the conference Multiscale Problems in Science and Technology. Challenges to Mathematical Analysis and Perspectives, which was held in Dubrovnik, Croatia, from May 31st to June 4th, 2010. Its previous editions were also organised in Dubrovnik (September 2000, respectively October 2007)
    corecore