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Abstract

In this paper we employ homogenization techniques to provide a rigorous derivation

of the Darcy scale model for precipitation and dissolution in porous media proposed in

[19]. The starting point is the pore scale model in [12], which is a coupled system of

evolution equations, involving a parabolic equation and an ordinary differential equation.

The former models ion transport and is defined in a periodically perforated medium. It is

further coupled through the boundary conditions to the latter, defined on the boundaries

of the perforations and modelling the dissolution and precipitation of the precipitate.

The main challenge is in dealing with the dissolution and precipitation rates, which

involve a monotone but multi-valued mapping. Due to this, the micro-scale solution lacks

regularity. With ε being the scale parameter (the ratio between the micro scale and the

macro scale length), we adopt the 2-scale framework to achieve the convergence of the

homogenization procedure as ε approaches zero.

1 Introduction

In this paper, we employ rigorous homogenization techniques to derive the effective (Darcy

scale) model for dissolution and precipitation in a complex (porous) medium proposed in

[19]. The starting point is the micro (pore) scale model analyzed in [12, 38], where the

existence and uniqueness of a solution are proved. The particularity is in the dissolution and

precipitation, involving multivalued rates. Using homogenization techniques, here we give a

rigorous derivation of the macro (core) scale counterpart. For the resulting upscaled model

existence and uniqueness is obtained.

At the micro scale, the medium consists of periodically repeating solid grains surrounded

by voids (the pores). The pore space forms a periodically perforated domain (the grains

being the perforations in the domain) which is completely filled by a fluid (e.g. water). The

fluid is flowing around the solid grains, transporting solutes, which are dissolved ions. The
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solute may further diffuse in the fluid, whereas at the the grain surfaces (the boundaries of

the perforations), the solute species may react and precipitate, forming a thin layer of an

immobile species (salt) attached to these boundaries. The reverse process of dissolution is

also possible.

One important assumption is that the layer of the species attached to the grain boundaries

(the precipitate) is very thin when compared to the pore thickness, so eventual changes in

the the geometry at the pore-scale can be neglected. This allows decoupling the equations

modelling the flow from those describing the chemical processes. This assumption is justified

whenever the density of the deposited layer is very large when compared to the typical density

of the solute (see [22, 34, 35, 36]). These papers consider the alternative approach, where

the precipitate layer induces non-negligible changes in the pores, leading to a model involving

free boundaries at the micro scale.

Encountered at the boundary of the perforations, the precipitation process is modeled by

a rate function that is monotone and Lipschitz continuous with respect to the solute con-

centrations. This is consistent with the mass action kinetics. For the dissolution, at sites

on the grain boundary where precipitate is present, it will be dissolved at a constant rate.

A special situation is encountered when no precipitate is present at one site, when certainly

no dissolution is possible. Besides, at such a location a precipitate layer (meaning an effec-

tive occurrence of the immobile species) is only possible if the fluid is ”oversaturated”. This

means that the precipitation rate exceeds a threshold value, the so-called solubility product.

In the ”undersaturated” regime, when the precipitation rate is below the solubility product,

no effective gain in the precipitate is possible. This can be seen as an instantaneous disso-

lution of any precipitate formed in undersaturated conditions, so the overall result of these

processes encountered at the time scale of interest is null. In other words, the precipitation

rate is in balance with the dissolution rate. Between oversaturation and undersaturation, the

precipitation rate equals the solubility product, which is an equilibrium value. In this case

neither precipitation, nor dissolution is encountered.

Note that the undersaturated regime is encountered for any value of the precipitation

rate that is below the solubility product. Since the overall rate is zero, at sites where no

precipitate is present, the dissolution rate should take a value between zero (no dissolution)

and the equilibrium one (the solubility product), in order to balance the dissolution rate. To

model this situation, we define the dissolution rate as a member of a multi-valued graph (a

scaled Heaviside graph). The macro scale model for the present problem has been proposed

in [19] and further discussed in [11, 10, 9], where the main focus is related to travelling waves.

Its pore scale counterpart has been analyzed in [12] and [38], where existence and uniqueness

results are obtained. Furthermore, in [12] a two dimensional strip was considered as a model

geometry for deriving rigorously the macro scale model by a transversal averaging procedure.

Still for a simplified geometry, but for the case when free boundaries are encountered at
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the pore scale due to dissolution and precipitation, upscaled models are derived formally in

[35] for moderate Peclét numbers. The same situation, but now under a dominated transport

regime - high Peclét numbers, is considered in [22]. The upscaled model is similar to Taylor

dispersion, but now includes the effect of the changing geometry and of the reactions at the

micro scale. Similar models are also obtained in [37] for biofilm growth, in [40] for drug

release from collagen matrices and in [39] for a reactive flow model involving an evolving

microstructure.

The dissolution and precipitation model under discussion here was considered also in

domains with rough boundaries. Assuming that the precipitate does not affect the domain,

effective boundary conditions are derived rigorously in [21]. Similar results, but for the

alternative approach involving free and rough boundaries are obtained formally in [25].

Strictly related to the dissolution and precipitation model discussed here, we recall that

the convergence of numerical schemes is analyzed in [8] for the micro scale model, and in

[24, 23] for the macro scale model. We further refer to [30], analyzing a multiscale Galerkin

approach to couple the micro scale and the macro scale variables. Though the results are for

Lipschitz-type nonlinearities, this method can be adapted in this context too.

The above mentioned rigorous upscaling result was obtained in [12] in a simplifed setting: a

two-dimensional strip. In this case, a simple transversal averaging procedure can be applied.

Here we consider the more general situation, when the porous medium is modelled by a

periodically perforated domain. Clearly, this requires a different upscaling approach. For

the rigorous derivation of the macroscopic model, we use the 2-scale convergence concept

developed in [2, 33] and extended further in [31] to include model components defined on

lower dimensional manifolds (the grain boundaries). In the limit, the resulting upscaled

model has the same structure as the model proposed in [19].

We mention [15, 16] for pioneering works on rigorous homogenization of reactive flow

models, including the derivation of upscaled models from well-posed microscopic (pore-scale)

models. Since then many publications have considered similar problems; we restrict here to

mention papers that are very close to the present contribution. Non-Lipschitz but continuous

reaction rates are considered [7], but for one species. In [31] and [27] the two-scale conver-

gence framework is extended for variables defined on lower-dimensional manifolds. Rigorous

homogenization results for reactive flows including adsorption and desorption at the bound-

aries of the perforations, but in dominating flow regime (high Peclét numbers) are obtained

in [3, 4, 29]. The two-scale convergence approach has been extended to include the mechanics

of the porous media and finds application in several fields including the biological, mechanical

etc. A recent work dealing with combining the reactive flow with the mechanics of cells is

[17]. Of particular relevance to the present work is the work of [27] where non-linear reaction

terms on the surface are treated using the techniques of periodic unfolding.

The major challenge in the present work is in dealing with the dissolution rates, which is a
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ΓG = ∂Y

Y0

Z = Y
⋃
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⋃
∂Y

Figure 1: Left: the porous medium Ω consisting of ε-scaled perforated cells distributed peri-
odically; the total void space is Ωε. Right: a reference cell containing the flow/transport part
(the pore Y ) and the perforation (the solid grain) Y0 separated by the interface ΓG. Note
that the geometry remains fixed in time for a given ε.

member of a multi-valued graph. For a proper interpretation of this rate, we first consider it as

the limit of its regularized version. Following [12], this allows identifying the dissolution rate in

a unique way. However, the resulting dissolution rate is non-Lipschitz and may even become

discontinuous. This brings two difficulties in obtaining the rigorous results: compared to

models involving Lipschitz continuous rates, the solution component defined in the perforated

domain lacks regularity, and for the solution components defined on the boundary of the

perforations a proper convergence concept is required.

Specifically, for passing to the limit in the sequence of micro scale solutions one usually

extends the solution components defined in the porous medium to the entire domain, including

perforations. The convergence is then obtained by uniform energy estimates, which involve

all (weak) derivatives. The estimates for the spatial derivatives are obtained here in the usual

manner. The time derivative instead needs more attention. The common approach, similar to

deriving the convection-diffusion-reaction equation with respect to time, does not work here

due to the particular dissolution rate. Here we elaborate the ideas in [20], and show that the

extension satisfies uniform estimates strictly in the space where the solution is defined, and

not a better one. In the present context, this seems to be the optimal result.

For the components defined on the boundaries, we follow the ideas in [32] and [27],

where the concept of strong two-scale convergence is introduced. This is based on unfold-

ing/localization operators [5, 6]. In particular, for the immobile species (the precipitate) we

obtain compactness results of the unfolded sequence leading to the strong convergence. These

results allow us to identify the limit of the (pore scale) dissolution rate.
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2 Setting of the model

Let ε > 0 be a sequence of strictly positive numbers tending to zero, with the property that
1
ε ∈ N. Let [0, T ] denote a time interval, with T > 0.

We consider the domain Ω = (0, 1)3 consisting of two subdomains: the perforations (rep-

resenting the solid grains) and the the perforated domain (the pore space) filled with fluid

and where flow, diffusion and transport is taking place, see Fig 1. At the micro scale, the

domain of interest (the fluid part) is denoted by Ωε, and the boundary of the perforations by

ΓεG. The boundary of the domain Ω consists of two parts

∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

The outer unit normal to ∂Ω is denoted by ν. On ΓεG, the boundaries of the perforations, ν

is the unit normal pointing into the perforations.

The microscopic structure of Ωε and ΓεG is periodic, and is obtained by the repetition of

the standard cell Z = (0, 1)3 scaled with the small parameter ε. We denote by Y and Y0 the

fluid part, respectively the perforation in Z. On ∂Y0, we denote by ν the unit normal to ΓG

pointing into the perforation Y0. We assume that

1. Y 0 ⊂ Z, Y = Z \ Y 0,

2. Y0 is a set of strictly positive measure, with piecewise smooth boundary ΓG = ∂Y0.

Let

Es :=
⋃

k∈Z3

Y k
0 =

⋃

k∈Z3

(Y0 + k).

Then the fluid part of the porous medium Ωε and the total boundary of the perforations ΓεG
are defined as follows:

Ωε = Ω \ εEs, ΓεG = Ω ∩ ε
⋃

k∈Z3

∂Y k
0 .

We emphasize that the assumption of Ω being a unit cube can be slightly generalized. The

results hold also for domains Ω with the property that for each ε, there exists Iε ⊂ R3 such

that

Ω̄ =
⋃
{εZk : k ∈ Iε}.

This means that the domain Ω the union of entire cells, for all chosen values of ε.

Finally, for any t ∈ (0, T ] we define

Qt = (0, t]×Q,

where Q is one of the sets Ω, Ωε, ΓG, or ΓεG.
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2.1 The micro scale model

Let us now formulate the equations which model the processes at the microscopic level. The

microscopic model contains two components: the equations for the flow, and the equations

for the chemistry. For the flow, we consider the Stokes system

{
ε24qε = ∇P ε,
∇ · qε = 0,

(2.1)

for all x ∈ Ωε. In the above, qε stands for the fluid velocity, P ε denotes the pressure inside the

fluid. With a proper scaling, when bringing the model to a dimensionless form the dynamic

viscosity becomes ε2 (see e.g. [14], p. 45). We complement Stokes equations by assigning

no-slip boundary conditions at the boundary of the perforations and given Dirichlet boundary

conditions at the outer boundary ∂Ω,

qε = 0, on ΓεG, and qε = qD, on ∂Ω, (2.2)

where qD is such that

∫

∂Ω

ν · qD = 0. As mentioned above, we assume that the chemical pro-

cesses neither change the micro scale geometry, nor the fluid properties. Therefore the flow

component does not depend on the other components of the model, and can be completely

decoupled. This means that one can solve first the Stokes system (2.1) with the given bound-

ary conditions (2.2) to obtain the fluid velocity qε. We further assume that qε is essentially

bounded uniformly w.r.t. ε, i.e.

‖qε‖∞,Ω ≤Mq <∞ (2.3)

for some constant Mq > 0. For the Stokes model with homogeneous Dirichlet boundary

conditions, the essential boundedness of qε holds if, for example, the domain is polygonal (see

[18, 26]). Here we assume that this estimate is uniform in ε. Since the focus here is on the

chemistry and recalling that the flow component is an independent one, in what follows we

simply assume qε given, having the properties mentioned above.

The main interest in this paper is in the subsystem modeling the chemical processes. This

takes into account two solute (mobile) species, which are transported by the fluid. In the

fluid, these species are diffusing, but no reactions are taking place there. The corresponding

model is therefore a convection-diffusion equation in the fluid part Ωε. Following [19, 12], we

simplify the analysis by considering only one immobile species, having the concentration uε.

This is justified if the two species are having the same diffusion coefficient. Accounting for

more species is fairly straightforward.

The chemical processes are encountered at the boundary of perforations, where the mobile

species react forming the precipitate. The reaction result is an immobile species (the precip-

itate) attached to this boundary and having the concentration vε. The precipitate may be
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dissolved, becoming a source of mobile species in the fluid. In the mathematical model, the

precipitation and dissolution are rates in the ordinary differential equation defined in every

location on the boundary of perforations. Finally, the partial differential equation and the

ordinary one are coupled through the boundary conditions.

With the concentrations uε and vε introduced above, the chemistry is described by the

following equations





∂tu
ε +∇ · (qεuε −D∇uε) = 0, in ΩεT ,

−Dν · ∇uε = εn∂tv
ε, on ΓεTG ,

∂tv
ε = k(r(uε)− wε), on ΓεTG ,

wε ∈ H(vε), on ΓεTG .

(2.4)

The system (2.4) is complemented by the following initial and boundary conditions,





uε(0, ·) = uI in Ωε,

vε(0, ·) = vI on ΓεG,

uε = 0, on ΓTD,

(qεuε −D∇uε) · ν = 0, on ΓTN .

(2.5)

As mentioned above, qε solves the Stokes system (2.1)-(2.2), which is not affected by the

chemistry and therefore we assume it given. Hence, the unknowns of the microscopic model

are uε, vε, and wε. In particular, wε describes the dissolution rate; the specific choice in

(2.4)4 will be explained below. Note that uε is defined in the domain Ωε, while vε and wε are

defined on the boundaries of perforations, ΓεG. The physical constant D is a (given) diffusion

coefficient, assumed constant. Further, k is a dimensionless reaction rate constant, which

we assume of moderate order w.r.t. ε and is normalized to 1. In physical sense, this means

that the precipitation sites are homogeneous. The extension to the non-homogeneous case

requires some additional technical steps in the proofs but does not pose any major difficulties.

Also note that assuming that D and k are moderate w.r.t. ε implies that the time scales of

diffusion, transport and chemical processes are of the same order. Finally, n is a constant

denoting the valence of the solute and for simplicity, we will be taking it as 1.

Clearly, (2.4)2 relates the change in the precipitate to the normal flux of the ions at the

boundaries, assuming the no-slip boundary condition for qε. Also observe the appearance

of ε in the boundary flux. As will be seen below, this allows to control the growth of the

precipitate when passing to the limit in the homogenization step. We refer to Chapter 1 of

[14] for a justification of this choice based on the geometry of the pores, and to [12], Remark

1.2 for an equivalent interpretation.

We proceed now by explaining the precipitation rate r(uε) and the dissolution rate wε

appearing in the last two equations of (2.4). We assume first that
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The precipitation rate r depends on the solute concentration, where

r : R→ [0,∞) is locally Lipschitz in R. (A.1)

There exists a unique u∗ ≥ 0, such that

r(uε) =

{
0 for uε ≤ u∗,
strictly increasing for uε ≥ u∗ with r(∞) =∞.

(A.2)

An example where these assumptions are fulfilled is given in [19], where a model based on

mass-action kinetics is considered. Note that a value u∗ > 0 exists such that

r(u∗) = 1.

With the proper scaling, this value is exactly the solubility product mentioned in the intro-

duction. As explained, this value is taken at an equilibrium concentration: if uε(t, x) = u∗,

neither precipitation, nor dissolution is encountered in x at time t.

Finally, the dissolution rate satisfies

wε ∈ H(vε),

where H(·) denotes the Heaviside graph,

H(u) =





{0} if u < 0,

[0, 1] if u = 0,

{1} if u > 0.

This means that whenever precipitate is present, hence vε(t, x) > 0, in this point dissolution

is encountered at a constant rate, 1 by scaling. One may view this as a surface process:

it does not matter how much precipitate is present in one location x on the boundary of

perforations at some time t, the dissolution will be encountered strictly at the surface of the

precipitate and not in the interior. A more interesting situation appears at sites where the

precipitate is absent, thus vε(t, x) = 0. Then a value has to be specified for the dissolution rate

wε(t, x) ∈ [0, 1]. To important features should be accounted for: no dissolution is allowed

whenever precipitate is absent, and further no precipitation should be encountered in the

undersaturated regime, when uε(t, x) < u∗. As explained in [12, 19, 38], whenever vε = 0,

the rate wε depends also on the solute concentration uε at the boundary. Specifically, in the

oversaturated regime, when uε > u∗ (the value u∗ being introduced above) we take wε = 1.

Since r(uε) > 1, this means that the overall precipitation/dissolution rate is strictly positive,

resulting in a net gain in the precipitate. In the undersaturated regime one hase uε < u∗, thus
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r(uε) ≤ 1. Then the solute concentration cannot support an effective gain in precipitate, and

the overal rate remains 0. In particular, dissolution should be avoided in this case. To achieve

this, we take wε = r(uε) ∈ [0, 1) and the overall rate becomes 0. Finally, since r(u∗) = 1, the

case uε = u∗ leads to an equilibrium, regardless of the value of vε. This can be summarized

as

wε =





0 if vε < 0,

min{r(uε), 1} if vε = 0,

1 if vε > 0.

(2.6)

The dissolution rate is defined for unphysical, negative values of vε for the sake of complete-

ness. We will prove below that whenever the initial precipitate concentration is non-negative,

no negative concentrations can be obtained. Note that in the above relation, wε ∈ H(vε) and

is a discontinuous function of vε and not an inclusion. In other words, the value of wε is well

specified in the case vε = 0 too. This choice is justified also from mathematical point of view,

as regularization arguments employed in [12] for obtaining the existence of a solution lead to

the above form for wε.

2.2 The variational formulation of the microscopic problem

When defining a weak solution we use common notations in the functional analysis: with Q

being either Ω, Ωε, ΓD, ΓG or ΓεG, we denote by Lp(Q) (p ≥ 1) the p–integrable functions

on Q (in the sense of Lebesgue). The space H1
0,ΓD

(Q) restricts the space H1(Q) of functions

having all first order partial derivatives in L2 to those elements vanishing on ΓD (in the sense

of traces). Similarly, W k,p(Ω) contains the functions having the partial derivatives up to

the kth order in Lp. (·, ·)Q stands for the scalar product in L2(Q); if Q = Ωε or Q = Ω, it

also denotes the duality pairing between H1
0,ΓD

(Q) and H−1(Q) – the dual of H1
0,ΓD

(Q). The

corresponding norm is denoted by ‖·‖Q, or simply ‖·‖ (where self understood). By L∞(Q) we

mean functions that are essentially bounded on Q, and the essential supremum is denoted by

‖u‖∞,Q. Further, for a Banach space V we denote by L2(0, T ;V ) the corresponding Bochner

space equipped with the standard inner product (where applicable) and norm. Besides, by

χI we mean the characteristic function of the set I.

Before stating the definition of a weak solution, we introduce the function spaces

Uε := {u ∈ L2(0, T ;H1
0,ΓD

(Ωε)) : ∂tu ∈ L2(0, T ;H−1(Ωε))},

Vε := H1(0, T ;L2(ΓεG)),

Wε := {w ∈ L∞(ΓεTG ) : 0 ≤ w ≤ 1}.

Then a weak solution is introduced in
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Definition 2.1. A triple (uε, vε, wε) ∈ Uε × Vε ×Wε is called a weak solution of (2.4)-(2.5)

if uε(0, ·) = uI , v
ε(0, ·) = vI ,

(∂tu
ε, φ)ΩεT +D(∇uε,∇φ)ΩεT − (qεuε,∇φ)ΩεT = −ε(∂tvε, φ)ΓεT

G
,

(∂tv
ε, θ)ΓεT

G
= (r(uε)− wε, θ)ΓεT

G
,

(2.7)

for all (φ, θ) ∈ L2(0, T ;H1
0,ΓD

(Ωε))× L2(ΓεTG ), and wε satisfies (2.6) a.e. in ΓεTG .

For the functions appearing as boundary and initial conditions we assume the following

uI ∈W 2,α
0,ΓD

(Ω), vI ∈ H1(Ω), and 0 ≤ uI , vI ≤M0 a.e., satisfying (A.3)

−νD∇uI = ε(r(uI)− wI), (compatibility condition).

The constant M0 > 0 is ε-independent, while α > 1. Further, wI appearing in the compati-

bility condition satisfies (2.6).

Note that the initial precipitation concentration vI is assumed in H1(Ω). For the micro

scale model, we consider its trace on ΓεG. For simplicity we considered homogeneous condi-

tions on ΓD, but the extension to non-homogeneous ones can be carried out without major

difficulties. Note that the initial and boundary conditions are compatible, and that the initial

conditions are defined for the entire domain Ω.

The existence of weak solutions to (2.4)-(2.6) is proved in [12] by regularizing the Heav-

iside graph. Clearly, the solutions of the regularized problems depend on the regularization

parameter. Passing this parameter to zero, one obtains a convergent sequence of solutions; its

limit is a weak solution to the original problem, in the sense of Definition 2.1. Furthermore,

the uniqueness of a solution is obtained in [38] by proving the following contraction result

with respect to the initial values

Theorem 2.1. Assume (A.1) and (A.2) and let (u(i)ε , v(i)ε , w(i)ε) ∈ Uε,Vε,Wε, i = 1, 2 be

two solutions in the sense of Definition 2.1, obtained for the initial values u
(i)
I , v

(i)
I (i = 1, 2)

respectively. Then for any t ∈ (0, T ] it holds

∫

Ωε

|u(1)ε(t, x)− u(2)ε(t, x)|dx+ ε

∫

Γε
G

|v(1)ε(t, s)− v(2)ε(t, s)|ds

≤
∫

Ωε

|u(1)
I (x)− u(2)

I (x)|dx+ ε

∫

Γε
G

|v(1)
I (s)− v(2)

I (s)|ds (2.8)

3 The macroscopic model and the main result

In this paper we let ε → 0 and investigate the limit behaviour of the solutions to the mi-

croscopic system (2.1)-(2.2), (2.4)-(2.5). We prove the convergence to the unique solution of
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the homogenized (macroscopic) system of differential equations defined below. For the flow

component, the macroscopic variables (q, P ) satisfy the Darcy law

∇ · q = 0, q = −K∇P, (3.1)

for all x ∈ Ω. The permeability tensor K has the components

kij =
1

|Y |

∫

Y

χji (y)dy, for all i, j ∈ {1, 2, 3}, (3.2)

where χji is the i-th component of χj = (χj1, χ
j
2, χ

j
3) solving the cell problems (j ∈ {1, 2, , 3})

(PDj )





−∆yχ
j(y) = ∇yΠj(y) + ej , in Y

∇y · χj(y) = 0, in Y

χj(y) = 0, on ΓG

χj ,Πj are Z − periodic.

(3.3)

The homogenized model component referring to the chemistry, the solution triple (u, v, w)

representing the upscaled solute concentration, precipitate concentration, and the macroscopic

dissolution rate are solution to the system





∂t

(
u+ |ΓG|

|Y | v
)

= ∇ · (S∇u− qu) ,

∂tv = (r(u)− w),

w ∈ H(v),

(3.4)

for all x ∈ Ω and t ∈ (0, T ]. In addition, analogous to (2.6), macroscopic w satisfies,

w =





0 if v < 0,

min{r(u), 1} if v = 0,

1 if v > 0.

(3.5)

The components of the diffusion tensor S are defined by

(S)i,j = D


δij +

1

|Y |

∫

Y

∂yjξidy


 , for all i, j ∈ {1, 2, 3}. (3.6)
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The functions ξi are solutions of the following cell problems (i ∈ {1, 2, 3})

(PCi )





−∆ξi = 0 in Y,

ν · ∇ξi = ν · ei on ΓG

ξi is Z periodic.

(3.7)

The system (3.4) is complemented by the boundary and initial conditions





u(0, ·) = uI in Ω,

v(0, ·) = vI in Ω,

u = 0, on ΓTD

(3.8)

As for the micro scale model, we are interested in the chemistry component of the upscaled

model, for which a weak solution is defined below.

Definition 3.1. A triple (u, v, w) with u ∈ L2(0, T ;H1(Ω)); ∂tu ∈ L2(0, T ;H−1(Ω)), v ∈
L∞(0, T ;L2(Ω)), w ∈ L∞(0, T ;L2(Ω)) is called a weak solution of (3.4)-(3.8) if (u(0), v(0)) =

(uI , vI), and

(∂tu, φ)ΩT +D(S∇u,∇φ)ΩT = −(qu,∇φ)ΩT − (∂tv, φ)ΩT ,

(∂tv, θ)L2(ΩT ) = (r(u)− w, θ)L2(ΩT ) , (3.9)

w ∈ H(v), satisfying (3.5)

for all (φ, θ) ∈ L2(0, T,H1
0,ΓD

(Ω))× L2(0, T ;L2(Ω)).

The main result is as follows:

Theorem 3.1. As ε ↘ 0, the sequence of micro-scale weak solutions (uε, vε, wε) of problem

(2.6) - (2.7) converges to the unique weak solution (u, v, w) of the upscaled model (3.9).

The notion of convergence will be made more precise in the following sections. We remark

that the effective solution (u, v, w) does not depend on the microscopic variable y ∈ ΓG. This

results from the fact that initial conditions are considered homogeneous and the processes

at the boundaries of perforations are also homogeneous. Finally, since the flow component

is completely decoupled from the chemistry, it is sufficient to quote existing results for the

transition from the micro scale (Stokes) model to the upscaled (Darcy) one. In this sense we

refer to [1, 16, 28, 41].

4 Uniform estimates for the microscopic solutions

In this section, we provide estimates for the solutions of the microscopic problem that are

uniform with respect to ε. These will allow passing to the limit ε → 0, and obtaining the
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solution to the homogenized model. In doing so, we recall the a-priori estimates obtained in

[12], without considering particularly the homogenization problem. According to Remarks

2.12 and 2.14 of [12], in the case of a periodically perforated medium (this being the situation

here), these estimates are ε-uniform. From [12, 38] one has:

Theorem 4.1. Assume (A.1) and (A.2), there exists a unique weak solution of (2.4)-(2.6)

in the sense of Definition 2.1. Moreover, this solution satisfies the following estimates

0 ≤ uε, vε ≤M, 0 ≤ wε ≤ 1, (4.1)

‖uε‖2L∞(0,T ;L2(Ωε)) + ‖∇uε‖2L2(ΩεT ) + ‖∂tuε‖2L2(0,T ;H−1(Ωε))

+ ε‖vε‖2L∞(0,T ;L2(Γε
G)) + ε‖∂tvε‖2L2(ΓεT

G )
≤ C, (4.2)

where the constants C > 0 and M > 0 are independent of ε.

For passing to the limit in the nonlinear reaction terms on ΓεG, one needs strong con-

vergence for the solute concentration uε. A first step in obtaining this is to extend uε and

∂tu
ε from Ωε to the entire domain Ω. The estimates from Theorem 4.1 allow extending uε

inside the perforation, but are insufficient for the extension of ∂tu
ε. In [15, 31], additional

estimates for ∂tu
ε are obtained by differentiating the model with respect to time. Because of

the possible discontinuities in the reaction rate, this approach does not work here.

The approach here is to use the explicit extension procedure in [15, 31], and to estimate

the difference quotients with respect to time. With X being a Banach space and for any

h > 0, a function g : [0, T ] 7→ X is extended for negative values of t by g(t) = g(0). Recalling

(A.3), since the extensions are constant in time, for all t < 0 one has

(∂tu
ε, φ)Ωε +D(∇uε,∇φ)Ωε − (qεuε,∇φ)Ωε + ε(r(uε)− wε, φ)Γε

G

= D(∇uI ,∇φ)Ωε − (qεuI ,∇φ)Ωε + ε(r(uI)− wI , φ)Γε
G
,

(∂tv
ε, θ)Γε

G
− (r(uε)− wε, θ)Γε

G
= −(r(uI)− wI , θ)Γε

G
,

(4.3)

for all ϕ ∈ H1
0,ΓD

(Ωε) and θ ∈ L2(ΓεG).

With g being either uε or vε extended to negative times as above, for all t ≥ 0 we define

the difference quotient

4hg(t) :=
g(t)− g(t− h)

h
.

We have

Lemma 4.1. Let h > 0, t ∈ [h, T ], and (uε, vε, wε) be a weak solution of (2.4)-(2.6) in the
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sense of Definition 2.1. Then the following estimate is uniform in h:

∫

Ωε

|4hu
ε(t, x)|dx+ ε

∫

Γε
G

|4hv
ε(t, x)| ≤

∫

Ωε

|4hu
ε(h, x)|dx+ ε

∫

Γε
G

|4hv
ε(h, x)|dx.

Further, assuming (A.3), a C > 0 not depending on h or ε exists s.t. for any t ≥ 0

∫

Ωε

|4hu
ε(t, x)|dx+ ε

∫

Γε
G

|4hv
ε(t, x)| ≤ C. (4.4)

Proof. For the ease of presentation we start with the case t > h, where no extension in time

is needed. After proving the first part of the lemma we consider the case t ∈ [0, h].

We follow the L1 contraction proof of Theorem 2.1 in [38] and define Tδ,Sδ : R→ R

Tδ(x) :=





−x− δ
2 , if x < −δ,

x2

2δ , if x ∈ [−δ, δ],
x− δ

2 if x > δ,

and Sδ(x) =





−1, if x < −δ,
x
δ , if x ∈ [−δ, δ],
1, if x > δ.

Here δ > 0 is a parameter than can be taken arbitrarily small. Clearly, Sδ = T ′δ . Note that

Tδ is a regularized approximation of the absolute value, whereas Sδ is the regularized sign

function.

Taking h > 0 and t ∈ (h, T ] arbitrary, with (φ, θ) ∈ H1
0,ΓD

(Ωε)×L2(ΓεG) and χI being the

characteristic function of the time interval I, we test in (2.7) first with χ(h,t)(φ, θ), and then

with χ(0,t−h)(φ, θ) (both lying in L2(0, T ;H1
0,ΓD

(Ωε)) × L2(ΓεTG )). Subtracting the resulting

gives

t∫

h

(∂τ∆hu
ε, φ)Ωεdτ +D

t∫

h

(∇∆hu
ε,∇φ)Ωεdτ

−
t∫

h

(q∆hu
ε,∇φ)Ωεdτ + ε

t∫

h

(∂t∆hv
ε, φ)Γε

G
, dτ = 0,

t∫

h

(∂τ∆hv
ε, θ)Γε

G
dτ −

t∫

h

(∆hr(u
ε)−∆hw

ε, θ)Γε
G
dτ = 0,

(4.5)

with wε ∈ H(vε)a.e. in ΓεG.

A straightforward step allows replacing the last term on the left in (4.5) by (∆hr(u
ε) −
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∆hw
ε, φ)Γε

G
. With φ := Sδ(4hu

ε) and θ := εSδ(4hv
ε), adding the two equations (4.5) gives

t∫

h

(4h∂tu
ε,Sδ(4hu

ε))Ωε + ε(4h∂tv
ε,Sδ(4hv

ε))Γε
G
dt

+D

t∫

h

(∇4hu
ε,∇Sδ(4hu

ε))Ωεdt−
t∫

h

(q4hu
ε,∇Sδ(4hu

ε))Ωεdt (4.6)

+ε

t∫

h

(4hr(u
ε)−4hw

ε,Sδ(4hu
ε)− Sδ(4hv

ε))Γε
G
dt = 0.

Denoting the terms above by Iiδ, i = 1, . . . , 5, we estimate them separately. I1
δ gives

I1
δ =

t∫

h

∫

Ωε

∂τTδ(4hu
ε(τ, x))dxdτ =

∫

Ωε

Tδ(4hu
ε(t, x))dx−

∫

Ωε

Tδ((4hu
ε(h, x)))dx.

Recall that 0 ≤ Tδ(s)| ≤ |s| + δ/2 and uε(t) ∈ L2(Ωε), using the dominated convergence

theorem,

lim
δ↘0
I1
δ =

∫

Ωε

|4hu(t, x)|dx−
∫

Ωε

|4hu(h, x)|dx.

In a similar manner,

lim
δ↘0
I2
δ = ε

∫

Γε
G

|4hv(t, x)| − ε
∫

Γε
G

|4hv(h, x)|.

Next, since Sδ ′ ≥ 0 a.e. on R, one gets

I3
δ =

D

2

t∫

h

∫

Ωε

Sδ
′(4hu

ε)|∇4hu
ε|2dxdt ≥ 0.

Furthermore, for I4
δ , since q has zero divergence, using the no-slip boundary conditions to-

gether with the vanishing trace of uε on ΓD one obtains

I4
δ =

t∫

h

∫

Ωε

∇ · (qTδ(4hu)) =

t∫

0

∫

∂Ωε

ν · (qTδ(4hu)) = 0.
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With f(uε(t, x), vε(t, x)) = r(uε(t, x))− wε(t, x) ∈ r(uε(t, x))−H(vε(t, x)), I5
δ becomes

I5
δ = ε

t∫

h

∫

Γε
G

(f(uε(t, x), v(t, x))− f(uε(t− h, x), v(t− h, x))) (Sδ(4hu
ε)− Sδ(4hv

ε))dxdt.

Due to the a priori estimates on uε and vε and since Sδ is bounded, the integration argument

in I5
δ is uniformly dominated in L1(ΓεTG ). Therefore, for obtaining uniform estimates for

|4hu(t, x)|, it is sufficient to prove that

lim
δ↘0

(f(uε(t, x), vε(t, x))− f(uε(t− h, x), vε(t− h, x))) (Sδ(4hu
ε)− Sδ(4hv

ε)) ≥ 0

a.e. on Γε,TG . This depends on the sign of the difference quotients 4hu
ε and 4hv

ε. Without

loss of generality we only consider the case when 4hu
ε ≥ 0, the proof for 4hu

ε < 0 being

similar.

Given a pair (t, x) ∈ Γε,TG , we note that if 4hu
ε > 0 and 4hv

ε > 0 one has

lim
δ↘0

(Sδ(4hu
ε)− Sδ(4hv

ε))→ 0.

The situation is similar if 4hu
ε ≥ 0 and 4hv

ε ≤ 0. Then we use the monotonicity of f with

respect to uε and vε (see also Lemma 1 in [38]) to obtain

f(uε(t, x), vε(t, x))− f(uε(t− h, x), vε(t− h, x)) ≥ 0.

Since Sδ(4hu
ε) ≥ 0 ≥ Sδ(4hv

ε), we have

lim
δ↘0

(f(uε(t, x), vε(t, x))− f(uε(t− h, x), vε(t− h, x))) (Sδ(4hu
ε)− Sδ(4hv

ε)) ≥ 0.

Using the estimates above into (4.6) gives

∫

Ωε

|4hu
ε(t, x)|dx+ ε

∫

Γε
G

|4hv
ε(t, x)| ≤

∫

Ωε

|4hu
ε(h, x)|dx+ ε

∫

Γε
G

|4hv
ε(h, x)|dx

uniformly in h.

Finally, we consider the case t ∈ [0, h]. Since the extensions of uε, vε and wε satisfy (4.3),
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the steps carried out for t > h lead to

t∫

0

(4h∂tu
ε,Sδ(4hu

ε))Ωε + ε(4h∂tv
ε,Sδ(4hv

ε))Γε
G
dt

+D

t∫

0

(∇4hu
ε,∇Sδ(4hu

ε))Ωεdt−
t∫

0

(q4hu
ε,∇Sδ(4hu

ε))Ωεdt (4.7)

+ε

t∫

0

(4hr(u
ε)−4hw

ε,Sδ(4hu
ε)− Sδ(4hv

ε))Γε
G
dt

= −D
h

t∫

0

(∇uI ,∇Sδ(4hu
ε))Ωεdt+

1

h

t∫

0

(quI ,∇Sδ(4hu
ε)dt

+
ε

h

t∫

0

(r(uI)− wI ,Sδ(4hv
ε)− Sδ(4hu

ε))Γε
G
dt =: I6

δ .

In view of the boundary conditions for both uI and q and since ∇ · q = 0, I6
δ rewrites

I6
δ =

D

h

t∫

0

(∆uI ,Sδ(4hu
ε))Ωεdt− 1

h

t∫

0

(q∇uI ,Sδ(4hu
ε)dt+

ε

h

t∫

0

(r(uI)−wI ,Sδ(4hv
ε))Γε

G
dt.

Using the fact that uI ∈ W 2,α and the boundedness of the initial condition, of the function

Sδ and of q, since t ≤ h it follows immediately that a C > 0 exists, depending on the initial

data but not on h or δ, such that |I6
δ | ≤ C (thus uniformly w.r.t. h and δ). Now proceeding

exactly as in the case t > h one obtains

∫

Ωε

|4hu
ε|dx+ ε

∫

Γε
G

|4hv
ε| ≤ C. (4.8)

Remark 4.1. The fact that 4hu
ε is bounded uniformly with respect to h in L1(Ωε) norm

does not imply ∂tu
ε ∈ L1((−h, T )× Ωε), since L1 is not reflexive. However, as we will show

below, this uniform estimate is sufficient to construct an extension of uε to Ω having sufficient

regularity in time.

4.1 Extension results

In this section, we construct an extension of uε from the ε-dependent domain (0, T )× Ωε to

the fixed domain (0, T ) × Ω. The difficulty which we have to face here is the fact that the
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time-derivative of the extended function can not be controlled easily due to the low regularity

with respect to time of the original function. Thus, to get the required regularity for the

extension of the time derivative, we have to use the special properties of our microscopic

solutions, see (4.8).

For u ∈ L1((0, T )× Y ), we define the mean value mu : (0, T )→ R as follows

mu(t) :=
1

|Y |

∫

Y
u(t, y)dy. (4.9)

Lemma 4.2. Let u ∈ L2(0, T ;H1(Y )) ∩ L∞(0, T ;L2(Y )) satisfying

∫

Y

∣∣∣∣
u(t, y)− u(t− h, y)

h

∣∣∣∣ dy ≤ C, (4.10)

for all 0 < h < T
4 , and t ∈ (h, T ). Then mu ∈W 1,∞(0, T ), with ||∂tmu||L∞(0,T ) ≤ C.

Proof. Since u ∈ L∞(0, T ;L2(Y )), it follows immediately that mu ∈ L∞(0, T ). Furthermore,

due to (4.10), we have for a.e. t ∈ (h, T )

∣∣∣∣
mu(t)−mu(t− h)

h

∣∣∣∣ =
1

|Y |

∣∣∣∣
∫

Y

u(t, y)− u(t− h, y)

h
dy

∣∣∣∣ ≤
1

|Y |

∫

Y

∣∣∣∣
u(t, y)− u(t− h, y)

h

∣∣∣∣ dy ≤ C

with C independent of h. Using the properties of difference quotients in Sobolev spaces, see

e.g. [13], Lemma 7.24, we conclude that ∂tmu ∈ L∞(0, T ), and ||∂tmu||L∞(0,T ) ≤ C.

Lemma 4.3. Let u ∈ L2(0, T ;H1(Y )), then there exists an extension ũ ∈ L2(0, T ;H1(Z)) of

u, such that

||ũ||L2(0,T ;H1(Z)) ≤ C||u||L2(0,T ;H1(Y )) (4.11)

Proof. For t ∈ (0, T ), we consider the H1-extension ũ(t, ·) of u(t, ·) constructed in [15]. More

precisely, first we extend u into a neighborhood U of ∂Y0 as follows: Using the regularity of

∂Y0, we construct the tubular neighborhood

Φ : ∂Y0 × (−ρ, ρ) → U (4.12)

(ȳ, λ) → y. (4.13)

Using this coordinate transform, we construct an extension of u by reflection:

u∗(y, t) = u∗(Φ(ȳ, λ), t) =

{
u(Φ(ȳ, λ), t) λ ≥ 0

u(Φ(ȳ,−λ), t) λ < 0

and extend u∗ further into Z in any smooth manner. Then, let ψ : Z → [0, 1] be a smooth
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function with compact support in Y0 and ψ ≡ 1 in Y0 \U . With mu defined in (4.2), we define

ũ := (1− ψ)(u∗ −mu) +mu. (4.14)

Obviously ũ is an extension of u. To show that ũ ∈ L2(0, T ;H1(Z)), we need to prove that

for a.e. t, ũ : [0, T ]→ H1(Z) is measurable. To do so, let sk be a sequence of simple functions

converging to u for a.e. t (as H1(Y ) elements). Extending each sk to s̃k by the procedure

in (4.14), the a.e. convergence of s̃k to ũ (now as H1(Z) elements) will still hold. Finally,

by using Lemma 5 in [15], we conclude that ũ ∈ L2(0, T ;H1(Z)) and (4.11) is satisfied. This

proves the lemma.

Lemma 4.4. Let uε ∈ L2(0, T ;H1(Ωε)) ∩ L∞(0, T ;L2(Ωε)), then there exists an extension

ũε ∈ L2(0, T ;H1(Ω)) of uε such that

||ũ||L2(0,T ;H1(Ω)) ≤ ||uε||L2(0,T ;H1(Ωε)).

Proof. We use (4.11) together with a standard scaling argument. For details, see [15].

Lemma 4.5. Let ∂tu
ε ∈ L2(0, T ;H−1(Ωε)) and uε satisfies (4.4) for all 0 < h < T

4 , and

t ∈ (h, T ), then there exists an extension ∂tũ
ε ∈ L2(0, T ;H−1(Ω)) of ∂tu

ε such that

||∂tũε||L2(0,T ;H−1(Ω)) ≤ C||∂tuε||L2(0,T ;H−1(Ωε)).

Proof. Using the improved regularity of uε with respect to time (see (4.10)), we analyze the

time derivative of the extension ũε. With ∂tmu obtained from Lemma 4.2 we define the

functional ∂tũ
ε ∈ L2(0, T ;H−1(Ω)) by

〈
∂tũ

ε, ϕψ̃
〉

Ω
= −

∫ T

0

∫

Ω
ũε∂tϕψ̃ dxdt, (4.15)

for all ϕ ∈ C∞0 (0, T ) and ψ̃ ∈ H1(Ω). By the definition of ũε, this rewrites

〈
∂tũ

ε, ϕψ̃
〉

Ω
= −

∫ T

0

∑

εZk⊂Ω

(∫

εY k

uε(∂tϕ)ψ̃ dxdt+

∫

εZk\Y k

((1− ψ)u∗ + ψmu) (∂tϕ)ψ̃ dx

)
dt.

Since ∂tu
ε ∈ L2(0, T ;H−1(Ωε)), the first group of integrals are estimated by

∣∣∣∣∣∣

∫ T

0

∑

εZk⊂Ω

∫

εY k

uε(∂tϕ)ψ̃ dxdt

∣∣∣∣∣∣
≤ C‖∂tuε‖L2(0,T ;H−1(Ωε))‖ϕψ̃‖L2(0,T ;H1(Ω)).
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For the remaining we recall Lemma 4.2 to obtain

∣∣∣∣∣

∫

εZk\Y k

((1− ψ)u∗ + ψmu) (∂tϕ)ψ̃ dxdt

∣∣∣∣∣

≤

∣∣∣∣∣

∫

εY k
0 ∩Uk

((1− ψ)u∗ + ψmu) (∂tϕ)ψ̃ dxdt

∣∣∣∣∣+

∣∣∣∣∣

∫

εY k
0 \Uk

mu(∂tϕ)ψ̃ dxdt

∣∣∣∣∣

≤ C‖∂tuε‖L2(0,T ;H−1(Ωε))‖ϕψ̃‖L2(0,T ;H1(Ω)).

The two estimates above prove the lemma.

5 Compactness of the microscopic solutions

First we note down the definitions of two-scale convergence and a lemma that would found

to be useful later. Following definitions are standard (e.g. [2, 31]).

Definition 5.1. A sequence uε ∈ L2(Ωε) is said to converge two-scale to a limit u ∈ L2(Ω×Z)

iff

lim
ε↘0

∫

Ωε

uε(x)φ(x,
x

ε
)dx =

∫

Ω

∫

Z

u(x, y)φ(x, y)dxdy

for all φ ∈ D(Ω;C∞per(Z)).

Definition 5.2. A sequence vε ∈ L2(ΓεG) is said to converge two-scale to a limit v ∈ L2(Ω×
ΓG)) iff

lim
ε↘0

ε

∫

Γε
G

vε(x)φ(x,
x

ε
)dx =

∫

Ω

∫

ΓG

v(x, y)φ(x, y)dxdy

for all φ ∈ D(Ω;C∞per(ΓG)).

We state the Oscillation Lemma for functions defined on lower dimensional periodic man-

ifolds (see [31] Lemma 1.3.2)

Lemma 5.1. For any function f ∈ C0(Ω̄;C0
per(ΓG)) holds

lim
ε↘0

ε

∫

Γε
G

f
(
x,
x

ε

)
dx =

∫

Ω

∫

ΓG

f(x, y)dxdy.

Based on the estimates proved in the preceding section, the following compactness prop-

erties of the microscopic solutions can be shown.
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Lemma 5.2. There exists limit functions

u ∈ L2(0, T ;H1(Ω)), ∂tu ∈ L2(0, T ;H−1(Ω)), u1 ∈ L2(0, T ;L2(Ω;H1
per(Z)),

v ∈ L2((0, T )× Ω× ΓG), ∂tv ∈ L2((0, T )× Ω× ΓG), w ∈ L2((0, T )× Ω× ΓG),

such that up to a subsequence

1. ũε ⇀ u weakly in L2(0, T ;H1(Ω)),

2. ∂tũ
ε ⇀ ∂tu weakly in L2(0, T ;H−1(Ω)),

3. ũε → u strongly in C0(0, T ;H−s(Ω)) ∩ L2(0, T ;Hs(Ω)), s ∈ (0, 1)

4. uε two-scale converges to u.

5. ∇uε two-scale converges to ∇xu+∇yu1.

6. vε two-scale converges to v.

7. ∂tv
ε two-scale converges to ∂tv.

8. wε two-scale converges to w.

Proof. The first two results are immediate by using the estimates (4.2) and the extension

lemmas 4.4 and 4.5. Result item 3 comes from standard interpolation arguments for Sobolev

spaces using ũε ∈ L∞(0, T ;H1(Ω)), and ∂tũ
ε ∈ L2(0, T ;H−1(Ω)). In particular, this implies

strong convergence of uε in L2(0, T ;L2(Ω)). For result item 4, the compactness arguments

([2, 31]) imply the two-scale convergence to the same u. Compactness results (see [31]) for

sequences defined on the boundary ΓεG, that is for vε, ∂tv
ε and wε, yield result items 5 to

8.

Using result item 3 in Lemma 5.2, a small calculation below shows that r(uε) converges

two-scale to r(u). Let s ∈ (1/2, 1). Using the Lipschitz continuity of r and the trace inequality

from [27], Lemma 4.3, we obtain

ε‖r(uε)− r(u)‖ΓεT
G
≤ C‖uε − u‖L2(0,T ;Hs(Ωε)) ≤ C‖uε − u‖L2(0,T ;Hs(Ω)) ↘ 0. (5.1)

This yields

∣∣∣∣∣∣∣

∫

ΓεT
G

εr(uε)φ(x,
x

ε
)dxdt−

∫

ΩT

∫

ΓG

r(u)φ(x, y)dydxdt

∣∣∣∣∣∣∣
≤

∫

ΓεT
G

∣∣∣ε(r(uε)− r(u))φ(x,
x

ε
)
∣∣∣ dxdt+

∣∣∣∣∣∣∣

∫

ΓεT
G

εr(u)φ(x,
x

ε
)dxdt−

∫

ΩT

∫

ΓG

r(u)φ(x, y)dydxdt

∣∣∣∣∣∣∣
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and using (5.1) first term on the right vanishes and the second term tends to zero because of

the Oscillation Lemma 5.1. Thus, we have shown that r(uε) converges 2-scale to r(u).

Even though wε converges two-scale to w, however this does not provide explicit form for the

function w. This identification will be obtained by considering the convergence of vε to v in

more details. We follow the ideas in [5, 6] and use the unfolding operator to establish the

strong two-scale convergence for vε.

Definition 5.3. For a given ε > 0, we define an unfolding operator T ε mapping measurable

functions on (0, T )× ΓεG to measurable functions on (0, T )× Ω× ΓG by

T εf(t, x, y) = f(t, ε[
x

ε
] + εy), y ∈ ΓG, (t, x) ∈ (0, T )× Ω.

Remark 5.1. Following [5, 6], the two-scale convergence on ΓεG becomes weak convergence

of sequence of unfolded functions on ΓG × Ω. Besides, the strong convergence of sequence of

unfolded functions on ΓG×Ω is equivalent to strong two-scale convergence of vε as introduced

in [32].

The strong convergence of the unfolded sequence T εvε is provided by the lemmas below.

Lemma 5.3. If T εvε → v∗ weakly in L2((0, T ) × Ω × ΓG) and vε converges two-scale to v

then v∗ = v a.e. on (0, T )× Ω× ΓG.

Proof. See Lemma 4.6, [27] ( see also [5]).

Lemma 5.4. T εvε converges strongly in L2((0, T )× Ω× ΓG).

Proof. Let us recall (2.6), and note that wε is monotonically increasing with respect to vε.

This also implies that T εwε is monotone with respect to T εvε. With the change in variable

x 7→ ε[xε ] + εy,y ∈ ΓG the equation (2.7)2 reads on the fixed domain (0, T )× Ω× ΓG

∂tT
εvε = T εr(uε)− T εwε.

We will prove below that the unfolded sequence T εvε is a Cauchy sequence and hence will

converge strongly in L2. Our approach is close to that used in [27] (also see [32] for sim-

ilar results by using translation estimates). The strong convergence of T εr(uε) to r(u) in

L2((0, T ) × Ω × ΓG) and the monotonicity of T εwε will be used to obtain this. Let m,n be

two natural number with n > m. Now T εnvεn − T εmvεm satisfies

d

dt
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω) =∫

ΓG×Ω

{T εnvεn − T εmvεm} {T εnr(uεn)− T εnwεn − T εmr(uεm) + T εmwεm} dxdy. (5.2)
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By monotonicity of T εwε with respect to T εvε, we have

(T εnvεn − T εmvεm) (T εnwεn − T εmwεm) ≥ 0. (5.3)

Using (5.3) in (5.2), the right hand side is estimated as

d

dt
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω)

≤
∫

ΓG×Ω

{T εnvεn − T εmvεm} {T εnr(uεn)− T εmr(uεm)} dxdy

≤ 1

2
‖T εnvεn − T εmvεm‖2L2(ΓG×Ω) +

1

2
‖T εnr(uεn)− T εmr(uεm)‖2L2(ΓG×Ω).

Now integrate in time and notice that as (n,m)→∞, due to strong convergence of T εr(uε)

the second term goes to 0 uniformly. Using Gronwall’s lemma we conclude that

‖T εnvεn − T εmvεm‖2
L2(ΓT

G×Ωh)
→ 0 as n,m→∞

uniformly and hence establishing the strong convergence of T εvε in L2((0, T )×Ω× ΓG).

Remark 5.2. Note that wε may have discontinuities with respect to t, x which makes dealing

with T εwε a delicate task. In the present situation, we are rescued by the fact that T εwε is

monotone with respect to T εvε and hence, (5.3) has a good sign which we use in (5.2). An

alternative approach would be to formulate the boundary conditions as a variational inequality

and then use the monotonicity arguments e.g. in [16].

6 Passing to the limit in the microscopic equations.

Up to now we have obtained the existence of a limit triple (u, v, w) for the sequence (uε, vε, wε).

Here we proceed by identifying this limit as the solution of the upscaled system of equations

(3.4), with the initial and boundary conditions (3.8). In view of two-scale convergence results,

the derivation of limit problem for (2.7)1 is standard. We defer the derivation of the limit

problem and the cell problem to the end of this section. We begin by considering (2.7)2

which contains the nonlinearities. Passing to the limit as ε ↘ 0 for the left hand side is

straightforward. The right hand side is taken care of by using the two scale convergence of

r(uε) and the strong convergence obtained in Lemma 5.4. What remains is to consider (2.7)3

and prove that w ∈ H(v) and has the structure of (3.5). Recall that from above discussions,

we have the following information:

T εvε → v strongly in L2((0, T )× Ω× ΓG),

T εwε → w weakly in L2((0, T )× Ω× ΓG),

T εwε ∈ H(T εvε).
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Since T εvε → v strongly in L2((0, T ) × Ω × ΓG) we have T εvε → v a.e.. We have only two

situations, either v(t, x, y) > 0 or v(t, x, y) = 0. In the first case and with µ := v(t, x, y)/2 > 0,

the pointwise convergence implies the existence of a εµ > 0 such that T εvε > µ for all ε ≤ εµ.

Then for any ε ≤ εµ we have T εwε = 1 implying w = 1.

For the case when v = 0, we consider the following situations:

(a) u > u∗

From the pointwise convergence of T εuε, there exists an ε∗ such that for ε ≤ ε∗, we

have uε > u∗. This gives, using monotonicity of r, r(T εuε) > 1 and recall the definition

(2.6) to obtain T εwε = 1. This implies that T εwε → 1 pointwise a.e.

(b) u ∈ [0, u∗)

Again the pointwise convergence of T εuε implies that for small enough ε, uε ∈ (0, u∗). In

this case, r(T εuε) < 1 leading to T εwε = r(T εuε) using (2.6). With strong convergence

of r, we get T εwε converges to r(u) pointwise a.e..

(c) u = u∗

Using similar arguments as above, r(u) = 1 and for sufficiently small ε, r(T εuε) → 1

pointwise a.e.. Hence, T εwε = min(r(T εuε), 1)→ 1 pointwise a.e..

Collecting the above cases, T εwε converges pointwise a.e. to w̃ where

w̃ =





1, v > 0,

min(r(u), 1), v = 0,

0, v < 0.

(6.1)

Combine this with the weak−∗ convergence to get w = w̃ implying that w has the structure

of (3.5). This completes the identification of w. The above discussions are summarized in

the following:

Lemma 6.1. The two-scale limit functions v, w satisfy

(∂tv, θ)ΩT×ΓG
=

∫

ΩT×ΓG

(r(u)− w) θ for all θ ∈ C∞(ΩT , C∞(ΓG)),

w ∈ H(v) and satisfies (3.5).

Remark 6.1. We make an important remark here. Since u(x, t) is independent of the micro-

variable y, and in view of the initial condition vI ∈ H1(Ω), we obtain that v = v(t, x), w =

w(t, x). This independence of v and w from y implies that the integration over Ω×ΓG reduces

to integrating over Ω with the multiplicative factor |ΓG|.

With the above Lemma providing us the limit equations for (2.7)2,3, we proceed to com-

plete the proof of Theorem 3.1.
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Proof. Proof of Theorem 3.1

Now we pass to the limit in (2.7)1 to obtain the limiting equation and the cell problem. The

low regularity of ∂tu
ε requires us to obtain the limiting equations via smooth test functions and

using density arguments. Accordingly, for all φ ∈ C∞0 (0, T ;H1(Ω)), using partial integration

for the time derivative term, the weak formulation (2.7)1 gives,

−(uε, χε∂tφ)ΩT +D(∇uε, χε∇φ)ΩT − (qεχεuε,∇φ)ΩT = −ε(∂tvε, φ)ΓεT
G
, (6.2)

where χε is the characteristic function for Ωε. Choose for the test function φ(t, x) = φ0(t, x)+

εφ1(t, x, xε ) with φ0 ∈ C∞0 (0, T ;C∞0 (Ω)) and φ1 ∈ C∞0 (ΩT ;C∞(Z)). This gives,

−
∫

ΩT

uεχ(
x

ε
)
(
∂tφ0(t, x) + ε∂tφ1(t, x,

x

ε
)
)

+D

∫

ΩT

∇xuε(t, x) · χ(
x

ε
)
(
∇xφ0(t, x) + ε∇xφ1(t, x,

x

ε
) +∇yφ1(t, x,

x

ε
)
)

+ε

T∫

0

∫

Γε
G

(
∂tv

ε, φ0(t, x) + φ1(t, x,
x

ε
)
)

= 0.

With ε↘ 0 and using Lemma 5.2 and Lemma 6.1, we obtain

−|Y |
∫

ΩT

u∂tφ0 +D

T∫

0

∫

Ω×Y

(∇xu(t, x) +∇yu1(t, x, y)) (∂xφ0(t, x) +∇yφ1(t, x, y)) +

T∫

0

∫

Ω

qu∇φ0 + |ΓG|
T∫

0

∫

Ω

(r(u)− w)φ0 = 0.

Here, to pass to the limit in term containing qε, we have used the strong convergence of qε

to q as proved in [16].

Next, setting φ0 ≡ 0 we obtain

D

T∫

0

∫

Ω×Y

(∇xu(t, x) +∇yu1) · ∇yφ1(t, x, y) = 0, for all φ1 ∈ C∞0 (ΩT ;C∞(Z)),

which is a weak form for the cell problem. Further,

D

T∫

0

∫

Ω×Y

(∇xu(t, x) +∇yu1)∇xφ0 = D

T∫

0

∫

Ω

S∇xφ0∇xu,
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where

(S)i,j = |Y |δij +

∫

Y

∂yjξi; −4ξi = 0 in Y, ∇ · ξi = ei · ν on ∂Y.

Now using Lemma 5.2, ∂tu ∈ L2(0, T ;H−1(Ω)) and hence, it is justified to perform another

partial integration to obtain (∂tu, φ) in the limiting equations. A usual density argument

allows us to retrieve the limiting equations for all test functions φ ∈ L2(0, T ;H1
0 (Ω)). Col-

lecting the above results in combination with Lemma 6.1, we conclude that (u, v, w) is a weak

solution as introduced in Definition 3.1. This completes the proof of Theorem 3.1.

7 Uniqueness of the macroscopic model

Theorem 7.1. Problem (3.4)-(3.8) has a unique solution.

Proof. Assume that there exist two solution triples (u1, v1, w1) and (u2, v2, w2). Define:

U := u1 − u2, V := v1 − v2, W := w1 − w2.

Clearly, at t = 0, we have U(0, x) = V (0, x) = W (0, x) = 0 for all x ∈ Ω. In terms of the

differences defined above, we have the resulting equations as:

(∂tU, φ) + (DS∇U,∇φ) + (∇ · (qU), φ) = −|ΓG|
|Y |

(r(u1)− r(u2)−W,φ), (7.1)

(∂tV, θ) = (r(u1)− r(u2)−W, θ), (7.2)

for all (φ, θ) ∈ L2(0, T,H1
0,ΓD

(Ω))× L2(0, T ;L2(Ω).

The uniqueness is proved as follows: first we use (7.2) to estimate V in terms of U . This

estimate can be then used in (7.1) to show that for all t, the norm of U(t) is bounded by the

initial condition, which is zero here. This establishes the uniqueness for U and thereby for V

from the previous estimate. The uniqueness for W follows directly from (3.5).

Taking θ = χ(0,t)V in (7.2) gives

1

2
‖V (t, ·)‖2 =

∫ t

0

∫

Ω
(r(u1)− r(u2))V (s, x)dxds−

∫ t

0

∫

Ω
WV (s, x)dxds.

Since H(·) is monotone, the last term is positive. Using the Lipschitz continuity of r, this

gives
1

2
‖V (t, ·)‖2 ≤ 1

2

∫ t

0
L2
r‖U(s, ·)‖2ds+

1

2

∫ t

0
‖V (s, ·)‖2ds.
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Employing Gronwall’s inequality one gets

‖V (t, ·)‖2 ≤ C exp(t)

∫ t

0
‖U(s, ·)‖2ds ≤ C(T )

∫ t

0
‖U(s, ·)‖2ds. (7.3)

Next, letting t ∈ (0, T ] fixed arbitrary and with ψ ∈ H1
0,ΓD

(Ω), combining (7.1) - (7.2) and

taking φ = χ(0,t)ψ in the resulting, since U and V are both 0 at t = 0 one gets

(U(t), ψ) + (DS

∫ t

0
∇U(s)ds,∇ψ) +

|ΓG|
|Y |

(V (t), ψ) = −(q

∫ t

0
∇U(s)ds, ψ).

Here we have used the fact that q is divergence free and does not depend on time. Now we

choose ψ(x) = U(t, x) to obtain

‖U(t, ·)‖2 +D
(
S
∫ t

0 ∇U(s, ·)ds,∇U(t, ·)
)

+ |ΓG|
|Y | (V (t, ·), U(t, ·))

≤ −(S1/2
∫ t

0 ∇U(s)ds, S−1/2qU(t, x))

≤
∥∥∥S1/2

∫ t
0 ∇U(s, ·)

∥∥∥
2

+
M2

q

α ‖U(t, ·)‖2.

In the above, we have used that S is symmetric positive definite, and hence, there exists

αS > 0 such that (Sξ, ξ) > αS(ξ, ξ) for any ξ ∈ R3.

From (7.3) we have

‖U(t, ·)‖2 +
(
S
∫ t

0 ∇U(s, ·)ds,∇U(t, ·)
)
≤ C

(
‖U(t, ·)‖2 +

∥∥∥S1/2
∫ t

0 ∇U(s, ·)
∥∥∥

2
)
. (7.4)

With

E(t) :=

∫ t

0
‖U(s, ·)‖2ds+

1

2

∥∥∥∥S1/2

∫ t

0
∇U(s, ·)ds

∥∥∥∥
2

,

(7.4) becomes

E′(t) ≤ C E(t).

Clearly, E(0) = 0 and E(t) ≥ 0 for all t, which immediately gives E(t) = 0 for all t. This

ensures that U(t) = 0 and, by (7.3), V (t) = 0. This concludes the proof of uniqueness.
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