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ANALYSIS OF A TWO-SCALE SYSTEM FOR GAS-LIQUID
REACTIONS WITH NON-LINEAR HENRY-TYPE TRANSFER

ADRIAN MUNTEAN∗ AND MARIA NEUSS-RADU†

Abstract. In this paper, we consider a coupled two-scale nonlinear reaction-diffusion system
modelling gas-liquid reactions. The novel feature of the model is the nonlinear transmission condition
between the microscopic and macroscopic concentrations, given by a nonlinear Henry-type transfer
function. The solution is approximated by using a Galerkin method adapted to the multiscale form
of the system. This approach leads to existence and uniqueness of the solution, and can also be used
for numerical computations for a larger class of nonlinear multiscale problems.

Key words. non-linear reaction-diffusion systems, multiscale Galerkin approximation, struc-
tured porous media, gas-liquid reactions, Henry’s law

AMS subject classifications. 35K57, 35B27, 65N30, 80A32, 76R50

1. Introduction. Gas-liquid reactions occur in a wealth of physicochemical pro-
cesses in chemical engineering [2, 3] or geochemistry [15], e.g. A minimal reaction-
diffusion scenario for such reactions is the following: A chemical species A1 penetrates
an unsaturated porous material thorough the air-filled parts of the pores and dissolves
in water along the interfaces between water and air. Once arrived in water, the species
A1 transforms into A2 and diffuses then towards places occupied by another yet dis-
solved diffusing species A3. As soon as A2 and A3 meet each other, they react to
produce water and various products (typically salts). This reaction mechanism can
be described as follows

A1 � A2 + A3
k−→ H2O + products. (1.1)

For instance, the natural carbonation of stone follows the mechanism (1.1), where
A1 := CO2(g), A2 := CO2(aq), and A3 := Ca(OH)2(aq), while the product of reac-
tion is in this case CaCO3(aq). This reaction mechanism is also encountered in catal-
ysis, see [5] and references therein, or in civil engineering, e.g. in chemical corrosion
scenarios as reported in [10, 11, 12].

This reaction-diffusion mechanism can be translated into a system of partial dif-
ferential equations on the microscopic (pore) scale, together with transmission condi-
tions at the interface separating the gas region from the region occupied by the liquid.
Typical laws describing the mass transfer at these air-water interfaces are Henry-type
laws.

When some information about the pore geometry is available, e.g. industrially
produced porous media have periodic geometry, these microscopic models can be
homogenized to obtain multiscale descriptions of the underlying processes. These
consist of a macroscopic system formulated on the entire domain, coupled with a
microscopic system, formulated on the standard cell associated to the microstructure.
The coupling between these two systems is given on one hand by a sink/source term
appearing in the macroscopic equation and involving an integral operator over the
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2 A. MUNTEAN AND M. NEUSS-RADU

microscopic solution. On the other hand side by the boundary conditions for the
microscopic solution, which is a (linear) Henry-type law involving the macroscopic
concentration. For the derivation of such two-scale models (also called double porosity
models) via homogenization techniques see e.g. [1, 7].

In our paper, we start from such a two-scale description of gas-liquid reactions
in which the coupling between the microscopic and macroscopic problem is given
by a nonlinear Henry-type law. Our study is partly motivated by some remarks
from [4] mentioning the occurrence of nonlinear mass-transfer effects at air-water
interfaces, partly by the fact that there are still a number of incompletely understood
fundamental issues concerning gas-liquid reactions, and hence, a greater flexibility in
the choice of the micro-macro coupling my help to identify the precise mechanisms.

We assume that the microstructure consists of solid matrix and pores partially
filled with water and partially filled with dry air; for details see Section 2.1. We
assume the microstructure to be constant and wet, i.e. we do not account for any
variations of the microstructure’s boundaries. The wetness of the porous material is
needed to host the chemical reaction (1.1). We assume the wet parts of the pore to
be static so that they do not influence the microscopic transport. The local geometry
of the porous media we are interested in is given by a standard cell.

The aim of the paper is to show that the two-scale model is well-posed, and to
give an approach which can be used for the numerical computation of the solution.
To this end, we use a Galerkin method to approximate the solutions of the two-scale
system. We remark that this approach is of general interest for handling multiscale
problems numerically.

To show the convergence of the finite-dimensional approximates, we prove es-
timates which guarantee the compactness of the approximate solutions. Here, the
challenging feature is to control the dependence of the cell solutions on the macro-
scopic variable. This is difficult because, on one hand we need strong L2-convergence
of the solutions and their traces to pass to the limit in the nonlinear terms. On the
other hand, the macroscopic variable enters the cell problem just as a parameter, and
therefore cannot be handled by standard methods. We remark that the techniques
employed here are very much inspired by the analysis performed in [13]. There a
multiscale Galerkin approach was developed to investigate transport and nonlinear
reaction in domains separated by membranes. Numerical tools for multiscale prob-
lems for linear diffusion processes were developed also in [8]. There, the aim was to
construct a sparse finite element discretization for the high-dimensional multiscale
problem.

The paper is organized as follows. We start with the statement of the problem
and the assumptions on the data. The positivity and boundedness of weak solutions
are proved in Sections 3 and 4. Next we show in Section 5 that there exists at most one
weak solution of the considered multiscale system. In Section 6, we define the Galerkin
approximations and show existence and uniqueness of the resulting systems of ordinary
differential equations. The most delicate part of the paper is showing estimates which
guarantee the compactness of the approximate solutions. Such estimates are proven
assuming stability of the projections on finite dimensional subspaces with respect to
appropriate norms. Finally, the convergence of the Galerkin approximates to the
unique solution of the multiscale problem is shown.

2. Setting of the problem.
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2.1. Geometry of the domain. Let Ω and Y be connected domains in R3 with
Lipschitz continuous boundaries. We denote by λk the k-dimensional Lebesgue mea-
sure (k ∈ {2, 3}), and assume that λ3(Ω) 6= 0 and λ3(Y) 6= 0. Here, Ω is the macro-
scopic domain, while Y denotes the standard pore associated with the microstructure
within Ω. We have that

Y = Y ∪ Y g,

where Y and Y g represent the wet region and the air-filled part of the standard pore
respectively. Let Y and Y g be connected. The boundary of Y is denoted by Γ, and
consists of two parts

Γ = ΓR ∪ ΓN ,

where ΓR ∩ ΓN = ∅, and λ2
y(ΓR) 6= 0. Note that ΓR is the gas/liquid interface

along which the mass transfer occurs, and λ2
y denotes the surface measure on ∂Y .

Furthermore, we denote by θ := λ3(Y g) the porosity of the medium. A possible
geometry for our standard pore is illustrated in Figure 2.1.

Fig. 2.1. Standard pore Y. Typical shapes for Y, Y g ⊂ Y. ΓR is the interface between the
gaseous part of the pore Y g and the wet region Y along which the mass transfer occurs.

2.2. Setting of the equations. Let us denote by S the time interval S =]0, T [
for a given T > 0. Let U , u and v denote the mass concentrations of the species
A1, A2, and A3 respectively, see (1.1). The mass-balance for the vector (U, u, v) is
described by the following two-scale system:

θ∂tU(t, x)−D∆U(t, x) = −
∫

ΓR

b(U(t, x)− u(t, x, y))dλ2
y in S × Ω, (2.1)

∂tu(t, x, y)− d1∆yu(t, x, y) = −kη(u(t, x, y), v(t, x, y)) in S × Ω× Y, (2.2)
∂tv(t, x, y)− d2∆yv(t, x, y) = −αkη(u(t, x, y), v(t, x, y)) in S × Ω× Y, (2.3)

with macroscopic non-homogeneous Dirichlet boundary condition

U(t, x) = Uext(t, x) on S × ∂Ω, (2.4)
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and microscopic homogeneous Neumann boundary conditions

∇yu(t, x, y) · ny = 0 on S × Ω× ΓN , (2.5)
∇yv(t, x, y) · ny = 0 on S × Ω× Γ. (2.6)

The coupling between the micro- and the macro-scale is made by the following non-
linear Henry-type transmission condition on ΓR

−∇yu(t, x, y) · ny = −b(U(t, x)− u(t, x, y)) on S × Ω× ΓR. (2.7)

The initial conditions

U(0, x) = UI(x) in Ω, (2.8)
u(0, x, y) = uI(x, y) in Ω× Y, (2.9)
v(0, x, y) = vI(x, y) in Ω× Y, (2.10)

close the system of mass-balance equations.
Note that the sink/source term −

∫
ΓR
b(U − u)dλ2

y models the contribution in
the effective equation (2.1) coming from mass transfer between air and water regions
at microscopic level. The parameter k is the reaction constant for the competitive
reaction between the species A2 and A3, while α is the ratio of the molecular weights
of these two species.

2.3. Assumptions on data and parameters. For the transport coefficients,
we assume that

(A1) D > 0, d1 > 0, d2 > 0.
Concerning the micro-macro transfer and the reaction terms, we suppose

(A2) The sink/source term b : R → R+ is globally Lipschitz, and b(z) = 0 if z ≤ 0.
This implies that it exists a constant ĉ > 0 such that b(z) ≤ ĉz if z > 0.

(A3) η : R × R → R+ is defined by η(r, s) := R(r)Q(s), where R,Q are globally
Lipschitz continuous, with Lipschitz constants cR and cQ respectively. Fur-
thermore, we assume that R(r) > 0 if r > 0 and R(r) = 0 if r ≤ 0, and
similarly, Q(s) > 0 if s > 0 and Q(s) = 0 if s ≤ 0.
Finally, k, α ∈ R, k > 0, and α > 0.

For the initial and boundary functions, we assume
(A4) Uext ∈ H1(S,H2(Ω)) ∩ H2(S,L2(Ω)) ∩ L∞+ (S × Ω), UI ∈ H2(Ω) ∩ L∞+ (Ω),

UI − Uext(0, ·) ∈ H1
0 (Ω), uI , vI ∈ L2(Ω,H2(Y )) ∩ L∞+ (Ω× Y ).

The classical choice for b in the literature on gas-solid reactions, see e.g. [3], is the
linear one given by b : R → R+, b(z) = ĉz for z > 0 and b(z) := 0 for z ≤ 0.
However, there are applications, see e.g. [4], where extended Henry’s Law models are
required. Our assumptions on b include self-limiting reactions, like e.g. Michaelis-
Menten kinetics. Typical reaction rates satisfying (A3) are power law reaction rates,
sometimes also refereed to as generalized mass action laws ; see e.g. [2]. These laws
have the form R(r) := rp and Q(s) := sq, where the exponents p ≥ 1 and q ≥ 1 are
called partial orders of reaction. However, to fulfill the Lipschitz condition, for large
values of the arguments the power laws have to replaced by Lipschitz functions.

2.4. Weak formulation. Our concept of weak solution is given in the following.
Definition 2.1. A triplet of functions (U, u, v) with (U −Uext) ∈ L2(S,H1

0 (Ω)),
∂tU ∈ L2(S × Ω), (u, v) ∈ L2(S,L2(Ω,H1(Y )))2, (∂tu, ∂tv) ∈ L2(S × Ω × Y )2, is
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called a weak solution of (2.1)–(2.10) if for a.e. t ∈ S the following identities hold

d

dt

∫
Ω

θUϕ+
∫

Ω

D∇U∇ϕ+
∫

Ω

∫
ΓR

b(U − u)ϕdλ2
ydx = 0 (2.11)

d

dt

∫
Ω×Y

uφ+
∫

Ω×Y

d1∇yu∇yφ−
∫

Ω

∫
ΓR

b(U − u)φdλ2
ydx

+k
∫

Ω×Y

η(u, v)φ = 0 (2.12)

d

dt

∫
Ω×Y

vψ +
∫

Ω×Y

d2∇yv∇yψ + αk

∫
Ω×Y

η(u, v)ψ = 0, (2.13)

for all (ϕ, φ, ψ) ∈ H1
0 (Ω)× L2(Ω;H1(Y ))2, and

U(0) = UI in Ω, u(0) = uI , v(0) = vI in Ω× Y.

3. Non-negativity of weak solutions. Let us first prove that weak solutions
are non-negative.

Lemma 3.1. Assume that hypotheses (A1)–(A4) hold, and that (U, u, v) is a weak
solution of problem (2.1)–(2.10). Then, for a.e. (x, y) ∈ Ω×Y and all t ∈ S, we have

U(t, x) ≥ 0, u(t, x, y) ≥ 0, v(t, x, y) ≥ 0. (3.1)

Proof. We use here the notation u+ := max{0, u} and u− := max{0,−u}. Testing
in (2.11)–(2.13) with (ϕ, φ, ψ) := (−U−,−u−,−v−), we obtain

d

dt

∫
Ω

θ|U−|2 +
d

dt

∫
Ω×Y

|u−|2 +D

∫
Ω

|∇U−|2 + d1

∫
Ω×Y

|∇yu
−|2

−k
∫

Ω×Y

η(u, v)u− +
∫

Ω

∫
ΓR

b(U − u)(u− − U−)dλ2
ydx = 0 (3.2)

d

dt

∫
Ω×Y

|v−|2d2

∫
Ω×Y

|∇v−|2 − αk

∫
Ω×Y

η(u, v)v− = 0. (3.3)

Note that by (A3) the last but one term of the r.h.s. of (3.2) and the last term of
(3.3) vanish. We denote by H(·) the Heaviside function and estimate the last term of
(3.2) as follows:∫

Ω

∫
ΓR

b(U − u)(U− − u−)dλ2
ydx ≤

∫
Ω

∫
ΓR

b(U − u)U−dλ2
ydx

≤ ĉ

∫
Ω

∫
ΓR

H(U − u)(U − u)U−dλ2
ydx

= ĉ

∫
Ω

∫
ΓR

H(U − u)[UU− − u+U+ + u−U−]dλ2
ydx

≤ ĉλ2
y(ΓR)

∫
Ω

|U−|2 + ĉ

∫
Ω

∫
ΓR

u−U−dλ2
ydx

≤ ĉλ2
y(ΓR)(1 +

1
2ε

)||U−||2L2(Ω) +
ĉε

2

∫
Ω

∫
Y

||u−||2H1(Y ). (3.4)

Now, we choose ε = d1
ĉ and apply Gronwall’s inequality in(3.2) and (3.3) to conclude

the proof of the lemma.
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4. Upper bounds for weak solutions. Next, we show that weak solutions are
bounded.

Lemma 4.1. If the hypotheses (A1)–(A4) hold, and (U, u, v) is a weak solution
of problem (2.1)–(2.10), then for a.e. (x, y) ∈ Ω× Y and all t ∈ S, we have

U(t, x) ≤M1, u(t, x, y) ≤M2, v(t, x, y) ≤M3, (4.1)

where

M1 := max{||Uext||L∞(S×Ω), ||UI ||L∞(Ω)},
M2 := max{||uI ||L∞(Ω×Y ),M1},
M3 := ||vI ||L∞(Ω×Y ).

Proof. Choosing in (2.11)–(2.13) the test functions (ϕ, φ, ψ) := ((U −M1)+, (u−
M2)+, (v −M3)+), yields

d

dt

∫
Ω

θ|(U −M1)+|2 +
d

dt
|(u−M2)+|2 +D

∫
Ω

|∇(U −M1)+|2

+ d1

∫
Ω×Y

|∇y(u−M2)+|2 + k

∫
Ω×Y

η(u, v)(u−M2)+

+
∫

Ω

∫
ΓR

b(U − u)(U −M1)+dλ2
ydx =

∫
Ω

∫
ΓR

b(U − u)(u−M2)+dλ2
ydx (4.2)

and

d

dt

∫
Ω×Y

|(v −M3)+|2 + d2

∫
Ω×Y

|∇y(v −M3)+|2

+αk

∫
Ω×Y

η(u, v)(v −M3)+ = 0. (4.3)

Since the last two terms from the l.h.s of (4.2) and the last one from the l.h.s. of (4.3)
are positive, the only term, which still needs to be estimated, is the term on the r.h.s
of (4.2). We proceed as follows:∫

Ω

∫
ΓR

b(U − u)(u−M2)+dλ2
ydx ≤ ĉ

∫
Ω

∫
ΓR

H(U − u)(U − u)(u−M2)+dλ2
ydx

≤ ĉ

∫
Ω

∫
ΓR

H(U − u)(U −M1)(u−M2)+dλ2
ydx− ĉ

∫
Ω

∫
ΓR

H(U − u)|(u−M2)+|2dλ2
ydx

≤ ĉ

∫
Ω

∫
ΓR

H(U − u)(U −M1)+(u−M2)+dλ2
ydx− ĉ

∫
Ω

∫
ΓR

H(U − u)|(u−M2)+|2dλ2
ydx

≤ ĉ

2

∫
Ω

∫
ΓR

H(U − u)|(U −M1)+|2dλ2
ydx−

ĉ

2

∫
Ω

∫
ΓR

H(U − u)|(u−M2)+|2dλ2
ydx

≤ ĉ

2
λ2

y(ΓR)||U −M1)+||2L2(Ω). (4.4)

The desired estimates on the solution now follow from (4.2), (4.3), and (4.4) by
Gronwall’s inequality.

Remark that, if the solution (U, u, v) is sufficiently smooth, and (A1)–(A3) hold,
then one can use the technique from Lemma 3.1 of [5] to prove that the system
(2.1)–(2.10) satisfies the classical maximum principle.
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5. Uniqueness of weak solutions. Before starting with the proof of the ex-
istence of weak solutions for the problem (2.1)–(2.10), let us show that if they exist
then weak solutions are unique.

Proposition 5.1. If (A1)–(A4) hold, then the weak solution to (2.1)–(2.10) is
unique.

Proof. Let (Ui, ui, vi), i ∈ {1, 2}, be arbitrary weak solutions of the problem (2.1)–
(2.10), thus satisfying for all (ϕ, φ, ψ) ∈ H1

0 (Ω)×
[
L2(Ω;H1(Y ))

]2 the equalities

d

dt

∫
Ω

θUiϕ+
∫

Ω

D∇Ui∇ϕ+
∫

Ω

∫
ΓR

b(Ui − ui)ϕdλ2
ydx = 0

d

dt

∫
Ω×Y

uiφ+
∫

Ω×Y

d1∇yui∇yφ−
∫

Ω

∫
ΓR

b(Ui − ui)φdλ2
ydx+ k

∫
Ω×Y

η(ui, vi)φ = 0

d

dt

∫
Ω×Y

viψ +
∫

Ω×Y

d2∇yvi∇yφ+ αk

∫
Ω×Y

η(ui, vi)ψ = 0.

We subtract the weak formulation written for (U2, u2, v2) from that one written for
(U1, u1, v1) and choose in the result as test function (ϕ, φ, ψ) := (U2−U1, u2−u1, v2−
v1) ∈ H1

0 (Ω)×
[
L2(Ω;H1(Y ))

]2. We obtain:

d

dt

∫
Ω

θ|U2 − U1|2 +
d

dt

∫
Ω×Y

|u2 − u1|2 +
d

dt

∫
Ω×Y

|v2 − v1|2

+D

∫
Ω

|∇(U2 − U1)|2 + d1

∫
Ω×Y

|∇y(u2 − u1)|2 + d2

∫
Ω×Y

|∇y(v2 − v1)|2

+ k

∫
Ω×Y

(η(u2, v2)− η(u1, v1)) [(u2 − u1) + α(v2 − v1)]

+
∫

Ω

∫
ΓR

[b(U2 − u2)− b(U1 − u1)][(U2 − U1)− (u2 − u1)]dλ2
ydx = 0 (5.1)

The last two terms in (5.1), say I1 and I2, can be estimated as follows.

I1 ≤ |k
∫

Ω×Y

(η(u2, v2)− η(u1, v1)) [(u2 − u1) + α(v2 − v1)] |

≤ k

∫
Ω×Y

|Q(v2)(R(u2)−R(u1)) [(u2 − u1) + α(v2 − v1)] |

+ k

∫
Ω×Y

|R(u1)(Q(v2)−Q(v1)) [(u2 − u1) + α(v2 − v1)] |

Using the boundedness of the weak solutions and the Lipschitz continuity of the
functions R and Q, we obtain

≤ kQmax

∫
Ω×Y

|R(u2)−R(u1)||(u2 − u1) + α(v2 − v1)|

+ kRmax

∫
Ω×Y

|Q(v2)−Q(v1)||(u2 − u1) + α(v2 − v1)|

≤ k(QmaxcR +RmaxcQ) max
{

3
2
,
α2

2
+ α+

1
2

} ∫
Ω×Y

(
|u2 − u1|2 + |v2 − v1|2

)
,
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where Rmax := maxr∈[0,M2]R(r), and Qmax := maxs∈[0,M3]Q(s). We estimate I2 as
follows.

I2 ≤ |
∫

Ω

∫
ΓR

[b(U2 − u2)− b(U1 − u1)][(U2 − U1)− (u2 − u1)]dλ2
ydx|

≤ 2ĉ
∫

Ω

∫
ΓR

|U2 − U1|2dλ2
ydx+ 2ĉ

∫
Ω

∫
ΓR

|u2 − u1|2dλ2
ydx. (5.2)

To estimate the second term in (5.2) we use the interpolation-trace inequality (5.3),
see Proposition 5.2 below, with θ = 1

2 . We obtain

2ĉ
∫

Ω

∫
ΓR

|u2 − u1|2λ2
ydx

≤ C

∫
Ω

(
||∇y(u2 − u1)||L2(Y ) + ||u2 − u1||L2(Y )

)
||u2 − u1||L2(Y ),

≤ ε

∫
Ω

||∇y(u2 − u1)||2L2(Y ) + cε

∫
Ω

||u2 − u1||2L2(Y )

Choosing now ε = d1
2 , and applying Gronwall’s inequality, we conclude the statement

of the Proposition.
Proposition 5.2 (Theorem 5.9 in [14]). Let Y be a bounded domain in Rn with

piecewise smooth Robin boundary ΓR and let u ∈ W 1,p(Y ). The following inequality
holds:

||u||Lq(ΓR) ≤ C
(
||∇yu||Lp(Y ) + ||u||Lγ(Y )

)θ ||u||1−θ
Lr(Y ), (5.3)

where θ = p
q

qn−r(n−1)
p(n+r)−nr ∈]0, 1[, 1 ≤ γ <∞,

1 ≤ r <
np

n− p
and 1 ≤ q <

p(n− 1)
n− p

if n > p

1 ≤ r, q <∞ if p = n or if p > n.

6. Global existence of weak solutions. In this section, we prove existence of
a global weak solution of problem (2.1)–(2.10) by using the Galerkin method. This
method has to be adapted to the two-scale form of our system, and yields an ansatz
for the numerical treatment of a more general class of multiscale problems. One
important aspect is the choice of the bases which are used to define finite dimensional
approximations of the solution. Here, the structure of the basis elements reflects
the two-scale structure of the solution; the basis elements on the domain Ω × Y are
chosen as tensor products of basis elements on the macroscopic domain Ω and on the
standard cell Y .

The most challenging aspect in the analysis of the discretized problems is to con-
trol the nonlinear sink/source integral term coupling the macroscopic and microscopic
problems. More precisely, enough compactness for the finite-dimensional approxima-
tions, with respect to both, the microscopic and macroscopic variables, is needed in
order to be able to pass to the limit in the discretized problems. This is not straight-
forward due to the fact that the macroscopic variable enters the cell problem just as
a parameter.
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In [13], a Galerkin approach for the approximation of a multiscale reaction-
diffusion system with transmission conditions was developed. We will adapt the con-
cepts used there to the structure of our actual problem. Numerical tools for elliptic
linear multiscale problems were developed in [8]. There, the aim was to construct a
sparse finite element discretization for the high-dimensional multiscale problem.

6.1. Galerkin approximation. Global existence for the discretized prob-
lem. We introduce the following Schauder bases: Let {ξi}i∈N be a basis of L2(Ω),
with ξj ∈ H1

0 (Ω), forming an orthonormal system (say o.n.s.) with respect to L2(Ω)-
norm. Furthermore, let {ζjk}j,k∈N be a basis of L2(Ω× Y ), with

ζjk(x, y) = ξj(x)ηk(y),

where {ηk}k∈N is a basis of L2(Y ), with ηk ∈ H1(Y ), forming an o.n.s. with respect
to L2(Y )-norm.

Let us also define the projection operators on finite dimensional subspaces PN
x , PN

y

associated to the bases {ξj}j∈N, and {ηk, }k∈N respectively. For (ϕ,ψ) of the form

ϕ(x) =
∑
j∈N

ajξj(x),

ψ(x, y) =
∑

j,k∈N
bjkξj(x)ηk(y),

we define

(PN
x ϕ)(x) =

N∑
j=1

ajξj(x), (6.1)

(PN
x ψ)(x, y) =

N∑
j=1

∑
k∈N

bjk σj(x)ηk(y) (6.2)

(PN
y ψ)(x, y) =

∑
j∈N

N∑
k=1

bjk σj(x)ηk(y). (6.3)

The bases {σj}j∈N, and {ηk}k∈N are chosen such that the projection operators PN
x , PN

y

are stable with respect to the L∞-norm andH2-norm; i.e. for a given function the L∞-
norm and H2-norm of the truncations by the projection operators can be estimated
by the corresponding norms of the function.

Now, we look for finite-dimensional approximations of order N ∈ N for the func-
tions U0 := U − Uext, u, and v, of the following form

UN
0 (t, x) =

N∑
j=1

αN
j (t)ξj(x), (6.4)

uN (t, x, y) =
N∑

j,k=1

βN
jk(t)ξj(x)ηk(y), (6.5)

vN (t, x, y) =
N∑

j,k=1

γN
jk(t)ξj(x)ηk(y), (6.6)
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where the coefficients αN
j , β

N
jk, γ

N
jk, j, k = 1, . . . , N are determined by the following

relations:

∫
Ω

θ∂tU
N
0 (t)ϕdx+

∫
Ω

D∇UN
0 (t)∇ϕdx = (6.7)

−
∫

Ω

(∫
ΓR

b
(
(UN

0 + Uext − uN )(t)
)
dλ2(y) + θ∂tU

ext(t) +D∆Uext(t)
)
ϕdx∫

Ω×Y

∂tu
N (t)φdxdy +

∫
Ω×Y

d1∇yu
N (t)∇yφdxdy = (6.8)∫

Ω

∫
ΓR

b
(
(UN

0 + Uext − uN )(t)
)
φdλ2(y)dx− k

∫
Ω×Y

η
(
uN (t), vN (t)

)
φdydx∫

Ω×Y

∂tv
N (t)ψ dydx+

∫
Ω×Y

d2∇yv
N (t)∇yψ dydx = (6.9)

− αk

∫
Ω×Y

η
(
uN (t), vN (t)

)
ψ dydx

for all ϕ ∈ span{ξj : j ∈ {1, . . . , N}}, and φ, ψ ∈ span{ζjk : j, k ∈ {1, . . . , N}}, and

αN
j (0) :=

∫
Ω

(UI − Uext(0))ξjdx, (6.10)

βN
jk(0) :=

∫
Ω

∫
Y

uIζjkdxdy, (6.11)

γN
jk(0) :=

∫
Ω

∫
Y

vIζjkdxdy. (6.12)

Taking in (6.7)-(6.9) as test functions ϕ = ξj , φ = ξjk, and ψ = ξjk, for j, k = 1, . . . , N ,
we obtain the following system of ordinary differential equations for the coefficients
αN = (αN

j )j=1,...,N , βN = (βN
jk) j=1,...,N

k=1,...,N
, and γN = (γN

jk) j=1,...,N
k=1,...,N

:

∂tα
N (t) +

N∑
i=1

Aiα
N
i (t) = F (αN (t), βN (t)), (6.13)

∂tβ
N (t) +

N∑
i,l=1

Bilβ
N
il (t) = F̃ (αN (t), βN (t)) +G(βN (t), γN (t)), (6.14)

∂tγ
N (t) +

N∑
i,l=1

Cilγ
N
il (t) = αG(βN (t), γN (t)), (6.15)
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where for j, k, i, l = 1, . . . , N we have

(Ai)j :=
∫

Ω

D∇ξi(x)∇ξj(x)dx,

(Bil)jk :=
∫

Ω×Y

d1∇ζil(x, y)∇ζjk(x, y) dydx,

(Cil)jk :=
∫

Ω×Y

d2∇ζil(x, y)∇ζjk(x, y) dydx,

(C±rm)j :=
1
2
D±

∫
Ω±

∇ξ±rm(x)∇ξ±j0(x)dx,

Fj := −1
θ

∫
Ω

(∫
ΓR

b
(
(UN

0 + Uext − uN )(t)
)
dλ2

y + θ∂tU
ext(t) +D∆Uext(t)

)
ξj(x)dx,

F̃jk :=
∫

Ω

∫
ΓR

b
(
(UN

0 + Uext − uN )(t)
)
ζjk(x, y) dλ2(y)dx,

Gjk := k

∫
Ω×y

η
(
uN (t), vN (t)

)
ζjk dydx.

Due to the assumptions (A2)–(A3) on b and η, the functions F, F̃ , and G are globally
Lipschitz continuous, and the Cauchy problem (6.10)-(6.15) has a unique solution
(αN , βN , γN ) in C1([0, T ])N × C1([0, T ])N2 × C1([0, T ])N2

.
We conclude this section by proving the global Lipschitz property of F̃ , the proof

of the Lipschitz continuity of F and G is similar. Let (UN
0 , u

N ) and (WN
0 , wN ) be of

the form (6.4), (6.5), with coefficients (αN
1 , β

N
1 ), (αN

2 , β
N
2 ) ∈ RN × RN2

. We have:

F̃jk(αN
1 , β

N
1 )− F̃jk(αN

2 , β
N
2 )

=
∫

Ω

∫
ΓR

[
b(UN

0 + Uext − uN )(t)− b(WN
0 + Uext − wN )(t)

]
ζjkdλ

2
ydx

≤ ĉ

∫
Ω

∫
ΓR

|(UN
0 −WN

0 )− (uN − wN )||ζjk|dλ2
ydx

= ĉ

∫
Ω

∫
ΓR

|
N∑

i=1

(αN
1 (t)− αN

2 (t))iξi −
N∑

i=1

N∑
`=1

(βN
1 (t)− βN

2 (t))i`ξi`||ζjk|dλ2
ydx

≤ ĉ
N∑

i=1

|(αN
1 (t)− αN

2 (t))i|
∫

Ω

∫
ΓR

|ξi(x)ζjk(x, y)|dλ2
ydx

+ ĉ
N∑

i=1

N∑
`=1

|(βN
1 (t)− βN

2 (t))i`|
∫

Ω

∫
ΓR

|ζi`(x, y)ζjk(x, y)|dλ2
ydx

≤ ĉmax{cijk}
N∑

i=1

|(αN
1 (t)− αN

2 (t))i|+ ĉmax{ci`jk}
N∑

i=1

N∑
`=1

|(βN
1 (t)− βN

2 (t))i`|,

where the coefficients cijk and ci`jk are given by

cijk :=
∫

Ω

∫
ΓR

|ξi(x)ζjk(x, y)|dλ2
ydx

ci`jk :=
∫

Ω

∫
ΓR

|ζi`(x, y)ζjk(x, y)|dλ2
ydx
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for i, l, j, k = 1, . . . , N . Thus, we obtain

|F̃ (αN
1 , β

N
1 )− F̃ (αN

2 , β
N
2 )| ≤ c(N)

(
|αN

1 − αN
2 |+ |βN

1 − βN
2 |

)
. (6.16)

6.2. Uniform estimates for the discretized problems. In this section, we
prove uniform estimates for the solutions to the finite-dimensional problems. Based
on this estimates, in the next section, we are able to pass in (6.7)–(6.9) to the limit
N →∞.

Theorem 6.1. Assume that the projection operators PN
x , PN

y , defined in (6.1)-
(6.3), are stable with respect to the L∞-norm and H2-norm, and that (A1)–(A4) are
satisfied. Then the following statements hold:

(i) The finite-dimensional approximations UN
0 (t), uN (t), and vN (t) are positive

and uniformly bounded. More precisely, we have for a.e. (x, y) ∈ Ω × Y , all
t ∈ S, and all N ∈ N

0 ≤ UN
0 (t, x) ≤ m1, 0 ≤ uN (t, x, y) ≤ m2, 0 ≤ vN (t, x, y) ≤ m3, (6.17)

where

m1 := 2||Uext||L∞(S×Ω) + ||UI ||L∞(Ω),

m2 := max{||uI ||L∞(Ω×Y ),m1},
m3 := ||vI ||L∞(Ω×Y ).

(ii) There exists a constant c > 0, independent of N , such that

||UN
0 ||L∞(S,H1(Ω)) + ||∂tU

N
0 ||L2(S,L2(Ω)) ≤ c, (6.18)

||uN ||L∞(S,L2(Ω;H1(Y ))) + ||∂tu
N ||L2(S,L2(Ω;L2(Y ))) ≤ c, (6.19)

||vN ||L∞(S,L2(Ω;H1(Y ))) + ||∂tv
N ||L2(S,L2(Ω;L2(Y ))) ≤ c, (6.20)

(6.21)

Proof. (i) We consider the function UN := UN
0 + Uext. Then (UN , uN , vN )

satisfies the equations∫
Ω

θ∂tU
N (t)ϕdx+

∫
Ω

D∇UN (t)∇ϕdx = (6.22)

−
∫

Ω

∫
ΓR

b
(
(UN − uN )(t)

)
ϕdλ2(y)dx∫

Ω×Y

∂tu
N (t)φdxdy +

∫
Ω×Y

d1∇yu
N (t)∇yφdxdy = (6.23)∫

Ω

∫
ΓR

b
(
(UN − uN )(t)

)
φdλ2(y)dx− k

∫
Ω×Y

η
(
uN (t), vN (t)

)
φdydx∫

Ω×Y

∂tv
N (t)ψ dydx+

∫
Ω×Y

d2∇yv
N (t)∇yψ dydx = (6.24)

− αk

∫
Ω×Y

η
(
uN (t), vN (t)

)
ψ dydx

for all ϕ ∈ span{ξj : j ∈ {1, . . . , N}}, and φ, ψ ∈ span{ζjk : j, k ∈ {1, . . . , N}}, and

UN (0) = PN
x (UI − Uext(0)) + Uext(0) in Ω,

uN (0) = PN
x (PN

y uI) in Ω× Y.

vN (0) = PN
x (PN

y vI) in Ω× Y.
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Using the stability of the projection operators with respect to the L∞-norm, the proof
follows the lines of the proofs of Lemma 3.1 and Lemma 4.1.

(ii) Let us first take (ϕ, φ, ψ) = (UN
0 , u

N , vN ) as test function in (6.7)–(6.9). Using
the positivity of the solution, we get

1
2
d

dt
||vN (t)||2L2(Ω×Y ) + d2||∇yv

N (t)||2L2(Ω×Y ) ≤ 0, (6.25)

θ

2
d

dt
||UN

0 (t)||2L2(Ω) +
1
2
d

dt
||uN (t)||2L2(Ω×Y ) (6.26)

+D||∇UN
0 ||2L2(Ω) + d1||∇yu

N ||2L2(Ω×Y )

+
∫

Ω

∫
ΓR

b(UN
0 + Uext − uN )(UN

0 − uN )dλ2
ydx

+
∫

Ω

(θ∂tU
ext + ∆Uext)UN

0 ≤ 0.

To estimate the following term, we the Lipschitz property of b and the interpolation-
trace inequality (5.3)∫

Ω

∫
ΓR

b(UN
0 + Uext − uN )(UN

0 − uN )dλ2
ydx (6.27)

≤ ĉ

∫
Ω

∫
ΓR

|UN
0 + Uext

0 − uN ||UN
0 − uN |dλ2

ydx

≤ C

∫
Ω

∫
ΓR

(
|UN

0 |2 + |Uext|2 + |uN |2
)
dλ2

ydx

≤ C
(
||UN

0 ||2L2(Ω) + ||Uext||2L2(Ω)

)
+ C

∫
Ω

||uN ||H1(Y )||uN ||L2(Y )

≤ C
(
||UN

0 ||2L2(Ω) + ||Uext||2L2(Ω)

)
+ ε||∇yu

N ||2L2(Ω×Y ) + C(ε)||uN ||2L2(Ω×Y ).

Taking ε := d1
2 in (6.27), inserting (6.27) in (6.26), and using the regularity properties

of Uext, we obtain

d

dt
||UN

0 (t)||2L2(Ω) +
d

dt
||uN (t)||2L2(Ω×Y ) +

d

dt
||vN (t)||2L2(Ω×Y ) (6.28)

+ ||∇UN
0 (t)||2L2(Ω) + ||∇yu

N ||2L2(Ω×Y ) + ||∇yv
N ||2L2(Ω×Y )

≤ C + ||UN
0 ||2L2(Ω) + ||uN ||2L2(Ω×Y ).

Integrating with respect to time, and applying Gronwall’s inequality yields the esti-
mates

||UN
0 ||L∞(S,L2(Ω)) + ||∇UN

0 ||L2(S,L2(Ω)) ≤ c, (6.29)

||uN ||L∞(S,L2(Ω×Y ))) + ||∇yu
N ||L2(S,L2(Ω×Y )) ≤ c, (6.30)

||vN ||L∞(S,L2(Ω×Y ))) + ||∇yv
N ||L2(S,L2(Ω×Y )) ≤ c. (6.31)

To obtain L∞-estimates with respect to time of the gradients, and the estimates
for the time derivatives, we differentiate with respect to time the weak formulation
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(6.7)–(6.9), and test with (ϕ, φ, ψ) = (∂tU
N
0 , ∂tu

N , ∂tv
N ) and obtain:

1
2
d

dt

∫
Ω

θ|∂tU
N
0 (t)|2 +

1
2
d

dt

∫
Ω×Y

|∂tu
N (t)|2 +

1
2
d

dt

∫
Ω×Y

|∂tv
N (t)|2 (6.32)

+ D

∫
Ω

|∇∂tU
N
0 |2 + d1

∫
Ω×Y

|∇y∂tu
N |2 + d2

∫
Ω×Y

|∇y∂tv
N |2

+
∫

Ω

∫
ΓR

b′(UN
0 + Uext − uN )

(
∂tU

N
0 + ∂tU

ext − ∂tu
N
t

) (
∂tU

N
0 − ∂tu

N
t

)
dλ2

y

= −
∫

Ω

θ∂ttU
ext∂tU

N
0 −

∫
Ω

D∆∂tU
ext∂tU

N
0

+ k

∫
Ω×Y

R′(uN )Q(vN )
(
|uN

t |2 + αuN
t v

N
t

)
+ k

∫
Ω×Y

R(u)Q′(v)
(
uN

t v
N
t + α|vN

t |2
)
.

Integrating this expression with respect to time, using the Lipschitz properties of
the nonlinear terms b and η, and the regularity properties of Uext, as well as the
interpolation-trace inequality (5.3), we obtain for all t ∈ S∫

Ω

|∂tU
N
0 (t)|2 +

∫
Ω×Y

|∂tu
N (t)|2 +

∫
Ω×Y

|∂tv
N (t)|2 (6.33)

+
∫ t

0

∫
Ω×Y

|∇∂tU
N
0 |2

∫ t

0

∫
Ω×Y

|∇y∂tu
N |2 +

∫ t

0

∫
Ω×Y

|∇y∂tv
N |2

≤
∫

Ω

|∂tU
N
0 (0)|2 +

∫
Ω×Y

|∂tu
N (0)|2 +

∫
Ω×Y

|∂tv
N (0)|2

+ C

(
1 +

∫ t

0

∫
Ω

|∂tU
N
0 (t)|2 +

∫ t

0

∫
Ω×Y

|∂tu
N |2 +

∫ t

0

∫
Ω×Y

|∂tv
N |2

)
.

To proceed, we have to estimate the norm of (∂tU
N
0 , ∂tu

N , ∂tv
N ) at t = 0. For

this purpose, we evaluate the weak formulation (6.7)–(6.9) at t = 0, and test with
(∂tU

N
0 (0), ∂tu

N (0), ∂tv
N (0)). We obtain∫

Ω

θ|∂tU
N
0 (0)|2 +

∫
Ω

D∇UN
0 (0)∇∂tU

N
0 (0) (6.34)

= −
∫

Ω

∫
ΓR

b(UN
0 (0) + Uext(0)− uN (0))∂tU

N
0 (0)dλ2

ydx

−
∫

Ω

θ∂tU
ext(0)∂tU

N
0 (0)−

∫
Ω

D∆Uext(0)∂tU
N
0 (0)∫

Ω×Y

|∂tu
N (0)|2 +

∫
Ω×Y

|∂tv
N (0)|2 (6.35)

+
∫

Ω×Y

d1∇yu
N (0)∇y∂tu

N (0) +
∫

Ω×Y

d2∇yv
N (0)∇y∂tv

N (0)

=
∫

Ω

∫
ΓR

b
(
UN

0 (0) + Uext(0)− uN (0)
)
∂tu

N (0)dλ2
ydx

+ k

∫
Ω×Y

η(uN (0), vN (0))(∂tu
N (0) + α∂tv

N (0))

Integrating by parts in the higher order terms, and using the fact that uN satisfies
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the transmission condition (2.7) in a weak sens, we obtain

∫
Ω

θ|∂tU
N
0 (0)|2 +

∫
Ω×Y

|∂tu
N (0)|2 +

∫
Ω×Y

|∂tv
N (0)|2 (6.36)

=
∫

Ω

D∆UN
0 (0)∂tU

N
0 (0) +

∫
Ω×Y

d1∆yu
N (0)∂tu

N (0) +
∫

Ω×Y

d2∆yv
N (0)∂tv

N (0)

−
∫

Ω

∫
ΓR

b(UN
0 (0) + Uext(0)− uN (0))∂tU

N
0 (0)dλ2

ydx

−
∫

Ω

θ∂tU
ext(0)∂tU

N
0 (0)−

∫
Ω

D∆Uext(0)∂tU
N
0 (0)

+ k

∫
Ω×Y

η(uN (0), vN (0))(∂tu
N (0) + α∂tv

N (0))

Now, the regularity properties of the initial and boundary data, together with the
stability of the projection operators PN

x and PN
y with respect to the H2-norm, yield

the desired bounds on the time derivatives at t = 0:

∫
Ω

|∂tU
N
0 (0)|2 +

∫
Ω×Y

|∂tu
N (0)|2 +

∫
Ω×Y

|∂tv
N (0)|2 ≤ c. (6.37)

Inserting now (6.37) into (6.33), and using Gronwall’s inequality, the estimates of the
Theorem are proved.

The estimates proved in Theorem 6.1 still don’t provide the compactness for the
solutions (UN

0 , u
N , vN ) needed to pass to the limit N →∞ in the nonlinear terms of

the variational formulation (6.7)–(6.9). In the next theorem, additional regularity of
the solutions uN , vN with respect to the macroscopic variable x is proved.

Theorem 6.2.

||∇xu
N ||L∞(S,L2(Ω×Y ) + ||∇xv

N ||L∞(S,L2(Ω×Y ) ≤ c (6.38)

||∇y∇xu
N ||L2(S,L2(Ω×Y ) + ||∇y∇xv

N ||L2(S,L2(Ω×Y ) ≤ c (6.39)

Proof. Let Ω′ be an arbitrary compact subset of Ω, and let h ∈]0, dist(Ω′, ∂Ω)[.
Denote by U i

h, ui
h, and vi

h the difference quotients with respect to the variable xi, for
i = 1, . . . , n, of UN , uN , and vN respectively. For example,

ui
h(t, x, y) :=

uN (t, x+ hei, y)− uN (t, x, y)
h

,

for all t ∈ S, x ∈ Ω′, and y ∈ Y . We consider the following variational formulation
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satisfied by these difference quotients, tested with (ϕ, φ, ψ) := (U i
h, u

i
h, v

i
h):

d

dt

∫
Ω

θ|U i
h|2 +D

∫
Ω

|∇U i
h|2 = (6.40)

−
∫

Ω

∫
ΓR

1
h

[
b(UN

0 (t, x+ hei) + Uext(x+ hei)− uN (t, x+ hei, y))

− b(UN
0 (t, x) + Uext(x)− uN (t, x, y))

]
UN

h dλ
2
ydx,

d

dt

∫
Ω×Y

|ui
h|2 + d1

∫
Ω×Y

|∇yu
i
h|2 = (6.41)∫

Ω

∫
ΓR

1
h

[
b(UN

0 (t, x+ hei) + Uext(x+ hei)− uN (t, x+ hei, y))

− b(UN
0 (t, x) + Uext(x)− uN (t, x, y))

]
ui

hdλ
2
ydx

+ k

∫
Ω×Y

1
h

[
η(uN (t, x+ hei, y), vN (t, x+ hei, y))− η(uN (t, x, y), vN (t, x, y))

]
ui

h,

d

dt

∫
Ω×Y

|vi
h|2 + d2

∫
Ω×Y

|∇yv
i
h|2 = (6.42)

αk

∫
Ω×Y

1
h

[
η(uN (t, x+ hei, y), vN (t, x+ hei, y))− η(uN (t, x, y), vN (t, x, y))

]
vi

h.

Firstly, we add equations (6.40) and (6.41), and estimate the coupling terms using the
Lipschitz property of b, the regularity of Uext, and the interpolation-trace estimate
(5.3) as follows.

−
∫

Ω

∫
ΓR

1
h

[
b(UN

0 (t, x+ hei) + Uext(x+ hei)− uN (t, x+ hei, y)) (6.43)

− b(UN
0 (t, x) + Uext(x)− uN (t, x, y))

]
(U i

h − uN
i )dλ2

ydx

≤ ĉ

∫
Ω

∫
ΓR

|U i
h − ui

h|2 + |Uext,i
h ||U i

h − ui
h|dλ2

y

≤ c

∫
Ω

∫
ΓR

(
|U i

h|2 + |Uext,i
h |2 + |ui

h|2
)
dλ2

ydx

≤ c

(
1 +

∫
Ω

|U i
h|2 + C(ε)

∫
Ω

∫
Y

|ui
h|2

)
+ ε

∫
Ω

∫
Y

|∇yu
i
h|2.

Next, we estimate the reaction term in the equation for ui
h by using the Lipschitz

properties of R and Q and the uniform boundedness of uN and vN as follows.∫
Ω×Y

k

h

[
R(uN (t, x+ hei, y))Q(vN (t, x+ hei, y))−R(uN (t, x, y))Q(vN (t, x, y))

]
ui

h

=
∫

Ω×Y

[
R(uN (t, x+ hei, y))−R(uN (t, x, y))

h
Q(vN (t, x+ hei, y))

+ R(uN (t, x, y))
Q(vN (t, x+ hei, y))−Q(vN (t, x, y))

h

]
ui

h

≤ QmaxcR|ui
h|2 +RmaxcQu

N
h v

i
h

≤ 2 (QmaxcR +RmaxcQ) (|ui
h|2 + |vi

h|2). (6.44)

The reaction term in the equation for vi
h can be estimated analogously. Finally,
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choosing ε := d1
2 in (6.43), and summarizing the above estimates, we get the inequality

d

dt

∫
Ω

|U i
h|2 +

d

dt

∫
Ω×Y

|ui
h|2 +

d

dt

∫
Ω×Y

|vi
h|2

+
∫

Ω

|∇U i
h|2 +

∫
Ω×Y

|∇yu
i
h|2 +

∫
Ω×Y

|∇yv
i
h|2

≤ c

(
1 +

∫
Ω

|U i
h|2 +

∫
Ω×Y

|ui
h|2 +

∫
Ω×Y

|vi
h|2

)
(6.45)

Integrating with respect to time in (6.45), and applying Gronwall’s inequality yields
for all i = 1, . . . , n, and N ∈ N the estimates

||ui
h||L∞(S,L2(Ω×Y ) + ||vi

h||L∞(S,L2(Ω×Y ) ≤ c (6.46)

||∇yu
i
h||L2(S,L2(Ω×Y ) + ||∇yv

i
h||L2(S,L2(Ω×Y ) ≤ c. (6.47)

with a constant c independent on i, h, and N . Now applying the result on difference
quotients from Lemma 7.24, in [6], the estimates (6.38)-(6.39) follow.

6.3. Convergence of the Galerkin approximates. In this section, we prove
the convergence of the Galerkin approximations (UN

0 , u
N , vN ) to the weak solution of

the two-scale problem (2.1)–(2.10). Based on the estimates proved in Section 6.2, we
first derive the following convergence properties of the sequence of finite-dimensional
approximations.

Theorem 6.3. There exists a subsequence, again denoted by (UN
0 , u

N , vN ), and a
limit (U0, u, v) ∈ L2(S;H1(Ω))×

[
L2(S;L2(Ω;H1(Y )))

]2, with (∂tU
N
0 , ∂tu

N , ∂tv
N ) ∈

L2(S × Ω)×
[
L2(S × Ω× Y )

]2, such that

(UN
0 , u

N , vN ) → (U0, u, v) weakly in L2(S;H1(Ω))×
[
L2(S;L2(Ω;H1(Y )))

]2
(6.48)

(∂tU
N
0 , ∂tu

N , ∂tv
N ) → (∂tU0, ∂tu, ∂tv) weakly in L2 (6.49)

(UN
0 , u

N , vN ) → (U0, u, v) strongly in L2 (6.50)
uN |ΓR

→ u|ΓR
strongly in L2(S × Ω, L2(ΓR)) (6.51)

Proof. The estimates from Theorem 6.1 immediately imply (6.48) and (6.49).
Since

||UN
0 ||L2(S,H1(Ω)) + ||∂tU

N
0 ||L2(S,L2(Ω)) ≤ c,

Lions-Aubin’s compactness theorem, see [9], Theorem 1, page 58, implies that there
exists a subset (again denoted by UN

0 ) such that

UN
0 −→ U0 strongly in L2(S × Ω).

To get the strong convergences for the cell solutions uN , vN , we need the higher
regularity with respect to the variable x, proved in Theorem 6.2. We remark that the
estimates (6.38)-(6.39) imply that

||uN ||H1(Ω,H1(Y )) + ||vN ||H1(Ω,H1(Y )) ≤ c.

Moreover, from Theorem 6.1, we have that

||∂tu
N ||L2(S×Ω×Y ) + ||∂tv

N ||L2(S×Ω×Y ) ≤ c.
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Since the embedding

H1(Ω,H1(Y )) ↪→ L2(Ω,Hβ(Y ))

is compact for all 1
2 < β < 1, it follows again from Lions-Aubin’s compactness theorem

that there exist subsequences (again denoted uN , vN ), such that

(uN , vN ) −→ (u, v) strongly in L2(S × L2(Ω,Hβ(Y )), (6.52)

for all 1
2 < β < 1. Now, (6.52) together with the continuity of the trace operator

Hβ(Y ) ↪→ L2(ΓR), for
1
2
< β < 1

yield the convergences (6.50) and (6.51)
Theorem 6.4. Let the assumptions (A1)-(A4) be satisfied. Assume further that

the projection operators PN
x , PN

y defined in (6.1)-(6.3) are stable with respect to the
L∞-norm and H2-norm. Let (U0, u, v) be the limit function obtained in Theorem
6.3. Then, the function (U0 + Uext, u, v) is the unique weak solution of the problem
(2.1)–(2.10).

Proof. Using the convergence results in Theorem 6.3, and passing to the limit
in (6.7)–(6.9), for N → ∞, standard arguments lead to the variational formulation
(2.11)–(2.13) for the function (U, u, v) = (U0 + Uext, u, v). Furthermore, the unique-
ness result from Proposition 5.1, yields the convergence of the whole sequence of
Galerkin approximations.

Acknowledgments. A.M. thanks Omar Lakkis (Sussex, UK) for interesting dis-
cussions on topics related to those treated here.
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