1,573 research outputs found
Local Invariants and Pairwise Entanglement in Symmetric Multi-qubit System
Pairwise entanglement properties of a symmetric multi-qubit system are
analyzed through a complete set of two-qubit local invariants. Collective
features of entanglement, such as spin squeezing, are expressed in terms of
invariants and a classifcation scheme for pairwise entanglement is proposed.
The invariant criteria given here are shown to be related to the recently
proposed (Phys. Rev. Lett. 95, 120502 (2005)) generalized spin squeezing
inequalities for pairwise entanglement in symmetric multi-qubit states.Comment: 9 pages, 2 figures, REVTEX, Replaced with a published versio
The effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field
The role of spin-orbit interaction on the ground state and thermal
entanglement of a Heisenberg XYZ two-qubit system in the presence of an
inhomogeneous magnetic field is investigated. For a certain value of spin-orbit
parameter , the ground state entanglement tends to vanish suddenly and when
crosses its critical value , the entanglement undergoes a revival. The
maximum value of the entanglement occurs in the revival region. In finite
temperatures there are revival regions in plane. In these regions,
entanglement first increases with increasing temperature and then decreases and
ultimately vanishes for temperatures above a critical value. This critical
temperature is an increasing function of , thus the nonzero entanglement can
exist for larger temperatures. In addition, the amount of entanglement in the
revival region depends on the spin-orbit parameter. Also, the entanglement
teleportation via the quantum channel constructed by the above system is
investigated and finally the influence of the spin-orbit interaction on the
fidelity of teleportation and entanglement of replica state is studied.Comment: Two columns, 9 pages, 8 Fig
Quantum logic with weakly coupled qubits
There are well-known protocols for performing CNOT quantum logic with qubits
coupled by particular high-symmetry (Ising or Heisenberg) interactions.
However, many architectures being considered for quantum computation involve
qubits or qubits and resonators coupled by more complicated and less symmetric
interactions. Here we consider a widely applicable model of weakly but
otherwise arbitrarily coupled two-level systems, and use quantum gate design
techniques to derive a simple and intuitive CNOT construction. Useful
variations and extensions of the solution are given for common special cases.Comment: 4 pages, Revte
Ubiquitous equatorial accretion disc winds in black hole soft states
High resolution spectra of Galactic Black Holes (GBH) reveal the presence of
highly ionised absorbers. In one GBH, accreting close to the Eddington limit
for more than a decade, a powerful accretion disc wind is observed to be
present in softer X-ray states and it has been suggested that it can carry away
enough mass and energy to quench the radio jet. Here we report that these
winds, which may have mass outflow rates of the order of the inner accretion
rate or higher, are an ubiquitous component of the jet-free soft states of all
GBH. We furthermore demonstrate that these winds have an equatorial geometry
with opening angles of few tens of degrees, and so are only observed in sources
in which the disc is inclined at a large angle to the line of sight. The
decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in
the soft state, suggests a link between higher wind ionisation and harder
spectral shapes. Although the physical interaction between the wind, accretion
flow and jet is still not fully understood, the mass flux and power of these
winds, and their presence ubiquitously during the soft X-ray states suggests
they are fundamental components of the accretion phenomenon.Comment: Accepted for publication in MNRAS Letter
Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation
There is strong evidence indicating that the particular form used to recast
the Einstein equation as a 3+1 set of evolution equations has a fundamental
impact on the stability properties of numerical evolutions involving black
holes and/or neutron stars. Presently, the longest lived evolutions have been
obtained using a parametrized hyperbolic system developed by Kidder, Scheel and
Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro,
Shibata and Nakamura. We present a new conformal-traceless system. While this
new system has some elements in common with the
Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of
conformal transformations and how the non-linear terms involving the extrinsic
curvature are handled. We show results from 3D numerical evolutions of a
single, non-rotating black hole in which we demonstrate that this new system
yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure
A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?
During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this "hypersoft state" are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.United States. National Aeronautics and Space Administration (Grant HST-HF2-51343.001- A)United States. National Aeronautics and Space Administration. Einstein Postdoctoral Fellowship Award (Grant PF2-130097
Recursive Encoding and Decoding of Noiseless Subsystem and Decoherence Free Subspace
When the environmental disturbace to a quantum system has a wavelength much
larger than the system size, all qubits localized within a small area are under
action of the same error operators. Noiseless subsystem and decoherence free
subspace are known to correct such collective errors. We construct simple
quantum circuits, which implement these collective error correction codes, for
a small number of physical qubits. A single logical qubit is encoded with
and , while two logical qubits are encoded with . The recursive
relations among the subspaces employed in noiseless subsystem and decoherence
free subspace play essential r\^oles in our implementation. The recursive
relations also show that the number of gates required to encode logical
qubits increases linearly in .Comment: 9 pages, 3 figure
- …