41 research outputs found
Symmetrised Characterisation of Noisy Quantum Processes
A major goal of developing high-precision control of many-body quantum
systems is to realise their potential as quantum computers. Probably the most
significant obstacle in this direction is the problem of "decoherence": the
extreme fragility of quantum systems to environmental noise and other control
limitations. The theory of fault-tolerant quantum error correction has shown
that quantum computation is possible even in the presence of decoherence
provided that the noise affecting the quantum system satisfies certain
well-defined theoretical conditions. However, existing methods for noise
characterisation have become intractable already for the systems that are
controlled in today's labs. In this paper we introduce a technique based on
symmetrisation that enables direct experimental characterisation of key
properties of the decoherence affecting a multi-body quantum system. Our method
reduces the number of experiments required by existing methods from exponential
to polynomial in the number of subsystems. We demonstrate the application of
this technique to the optimisation of control over nuclear spins in the solid
state.Comment: About 12 pages, 5 figure
Benchmarking quantum control methods on a 12-qubit system
In this letter, we present an experimental benchmark of operational control
methods in quantum information processors extended up to 12 qubits. We
implement universal control of this large Hilbert space using two complementary
approaches and discuss their accuracy and scalability. Despite decoherence, we
were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state),
and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure
state using liquid state nuclear magnetic resonance quantum information
processors.Comment: 11 pages, 4 figures, to be published in PR
Spintronics and Quantum Dots for Quantum Computing and Quantum Communication
Control over electron-spin states, such as coherent manipulation, filtering
and measurement promises access to new technologies in conventional as well as
in quantum computation and quantum communication. We review our proposal of
using electron spins in quantum confined structures as qubits and discuss the
requirements for implementing a quantum computer. We describe several
realizations of one- and two-qubit gates and of the read-in and read-out tasks.
We discuss recently proposed schemes for using a single quantum dot as
spin-filter and spin-memory device. Considering electronic EPR pairs needed for
quantum communication we show that their spin entanglement can be detected in
mesoscopic transport measurements using metallic as well as superconducting
leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental
Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected,
references adde
Quantum controlled phase gate and cluster states generation via two superconducting quantum interference devices in a cavity
A scheme for implementing 2-qubit quantum controlled phase gate (QCPG) is
proposed with two superconducting quantum interference devices (SQUIDs) in a
cavity. The gate operations are realized within the two lower flux states of
the SQUIDs by using a quantized cavity field and classical microwave pulses.
Our scheme is achieved without any type of measurement, does not use the cavity
mode as the data bus and only requires a very short resonant interaction of the
SQUID-cavity system. As an application of the QCPG operation, we also propose a
scheme for generating the cluster states of many SQUIDs.Comment: 4 pages, resumitte
Entanglement in a Solid State Spin Ensemble
Entanglement is the quintessential quantum phenomenon and a necessary
ingredient in most emerging quantum technologies, including quantum repeaters,
quantum information processing (QIP) and the strongest forms of quantum
cryptography. Spin ensembles, such as those in liquid state nuclear magnetic
resonance, have been powerful in the development of quantum control methods,
however, these demonstrations contained no entanglement and ultimately
constitute classical simulations of quantum algorithms. Here we report the
on-demand generation of entanglement between an ensemble of electron and
nuclear spins in isotopically engineered phosphorus-doped silicon. We combined
high field/low temperature electron spin resonance (3.4 T, 2.9 K) with
hyperpolarisation of the 31P nuclear spin to obtain an initial state of
sufficient purity to create a non-classical, inseparable state. The state was
verified using density matrix tomography based on geometric phase gates, and
had a fidelity of 98% compared with the ideal state at this field and
temperature. The entanglement operation was performed simultaneously, with high
fidelity, to 10^10 spin pairs, and represents an essential requirement of a
silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure
v2: Updated reference
Implementation of the Five Qubit Error Correction Benchmark
The smallest quantum code that can correct all one-qubit errors is based on
five qubits. We experimentally implemented the encoding, decoding and
error-correction quantum networks using nuclear magnetic resonance on a five
spin subsystem of labeled crotonic acid. The ability to correct each error was
verified by tomography of the process. The use of error-correction for
benchmarking quantum networks is discussed, and we infer that the fidelity
achieved in our experiment is sufficient for preserving entanglement.Comment: 6 pages with figure