376 research outputs found

    Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus

    Get PDF
    VARIOUS virus infections lead to the formation of cytotoxic lymphocytes (CL), which are capable of killing virus-infected target cells1−4. Specific lysis of target cells infected with 51Cr-labelled vaccinia virus could be observed when investigating the cell-mediated cytotoxic reaction to vaccinia virus5; the CL could be characterised as a T cell. The sensitised lymphocytes from C3H mice could only kill syngeneic L929 cells infected with vaccinia virus, whereas lysis by sensitised lymphocytes derived from DBA/2 mice was restricted to the syngeneic infected mastocytoma P815X2 cells. In the lymphocytic choriomeningitis infection the target cell lysis was shown to be restricted by H-2 antigen6. We report here experiments with primary fibroblasts of the mouse strains C3H, DBA/2 and the (C3H DBA/2)F1 generation were designed to affirm that the effector phase of virus-specific lysis of target cells mediated by T cells is restricted by H-2 antigen even in the vaccinia virus infection. Further experiments with H-2 alloantisera were performed to indicate the close local relationship between H-2 antigens and viral surface antigens

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation

    Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor alpha gene

    Get PDF
    The interleukin 2 receptor alpha-chain (IL-2R alpha) gene is a key regulator of lymphocyte proliferation. IL-2R alpha is rapidly and potently induced in T cells in response to mitogenic stimuli. Interleukin 2 (IL-2) stimulates IL-2R alpha. transcription, thereby amplifying expression of its own high-affinity receptor. IL-2R alpha transcription is at least in part controlled by two positive regulatory regions, PRRI and PRRII. PRRI is an inducible proximal enhancer, located between nucleotides -276 and -244, which contains NF-kappaB and SRE/CArG motifs. PRRII is a T-cell-specific enhancer, located between nucleotides -137 and -64, which binds the T-cell-specific Ets protein Elf-1 and HMG-I(Y) proteins. However, none of these proximal regions account for the induction of IL-2R alpha transcription by IL-2. To find new regulatory regions of the IL-2R alpha gene, 8.5 kb of the 5' end noncoding sequence of the IL-2R alpha gene have been sequenced. We identified an 86-nucleotide fragment that is 90% identical to the recently characterized murine IL-2-responsive element (mIL-2rE). This putative human IL-2rE, designated PRRIII, confers IL-2 responsiveness on a heterologous promoter. PRRIII contains a Stat protein binding site that overlaps with an EBS motif (GASd/EBSd). These are essential for IL-2 inducibility of PRRIII/CAT reporter constructs. IL-2 induced the binding of Stat5a and b proteins to the human GASd element. To confirm the physiological relevance of these findings, we carried out in vivo footprinting experiments which showed that stimulation of IL-2R alpha expression correlated with occupancy of the GASd element. Our data demonstrate a major role of the GASd/EBSd element in IL-2R alpha regulation and suggest that the T-cell-specific Elf-1 factor can serve as a transcriptional repressor

    Impact of Deep Coalescence on the Reliability of Species Tree Inference from Different Types of DNA Markers in Mammals

    Get PDF
    An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree

    Mitigating Mutational Meltdown in Mammalian Mitochondria

    Get PDF
    Animal mitochondrial genomes have high rates of sequence evolution, and should decay from the accumulation of deleterious mutations. But the purging of mutant mtDNAs in a pedigree of "mutator mice" reveals the speed and power of purifying selection to maintain mitochondrial function

    Genetic analysis of an H-2 mutant, B6.C-H-2 ba , using cell-mediated lympholysis: T- and B-cell dictionaries for histocompatibility determinants are different

    Full text link
    B6.C-H-2 ba [H (z1)] is a mutant derived from C57BL/6. The two strains mutually reject their skingrafts and are incompatible in the mixed leucocyte reaction (MLR) and in cell-mediated lympholysis (CML) assays. They are serologically indistinguishable.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46732/1/251_2005_Article_BF01564084.pd
    • …
    corecore