156 research outputs found

    Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss

    Get PDF
    Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs.Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor alpha (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio.These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism

    Restriction of HIV-1 infection in sickle cell trait

    Get PDF
    Patients with sickle cell disease (SCD) have a lower risk for HIV-1 infection. We reported restriction of ex vivo HIV-1 infection in SCD peripheral blood mononuclear cells (PBMCs) that was due, in part, to the upregulation of antiviral, inflammatory, and hemolytic factors, including heme oxygenase-1 (HO-1). Here, we investigated whether individuals with sickle cell trait (SCT), who develop mild hemolysis, also restrict HIV-1 infection. Ex vivo infection of SCT PBMCs exhibited an approximately twofold reduction of HIV-1 replication and lower levels of HIV-1 reverse transcription products, 2-long terminal repeat circle, HIV-1 integration, and gag RNA expression. SCT PBMCs had higher HO-1 messenger RNA (mRNA) and protein levels and reduced ribonucleotide reductase 2 (RNR2) protein levels. HO-1 inhibition by tin porphyrin eliminated ex vivo HIV-1 restriction. Among Howard University clinic recruits, higher levels of HO-1 and RNR2 mRNA and lower HIV-1 env mRNA levels were found in SCT individuals living with HIV-1. To determine the population-level effect of SCT on HIV-1 prevalence, we assessed SCT among women living with HIV (WLH) in the WIHS (Women InteragencyHIV-1 Study). Among WIHS African-American participants, the prevalence of SCT was lower among women with HIV compared with uninfected women (8.7% vs 14.2%; odds ratio, 0.57; 95% confidence interval, 0.36-0.92; P = .020). WIHS WLH with SCT had higher levels of CD4+/CD8+ ratios over 20 years of follow-up (P = .003) than matched WLH without SCT. Together, our findings suggest that HIV-1 restriction factors, including HO-1 and RNR2, might restrict HIV-1 infection among individuals with SCT and limit the pathogenicity of HIV

    Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults

    Get PDF
    Summary: Bone mineral density declines with increasing older age. We examined the levels of circulating factors known to regulate bone metabolism in healthy young and older adults. The circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin were positively associated with WBMD in older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young. Purpose: To investigate the relationship between whole-body bone mineral density (WBMD) and levels of circulating factors with known roles in bone remodelling during 'healthy' ageing. Methods: WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18-30 years; 53% female). Results: WBMD was lower in old than young. Circulating osteocalcin was lower in old compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in old compared with young. These circulating factors were each positively associated with WBMD in the older adults and the relationships remained after adjustment for covariates (r-values ranging from 0.174 to 0.254, all p<0.01). In multivariate regression, the body mass index, circulating sclerostin and whole-body lean mass together accounted for 13.8% of the variation with WBMD in the older adults. In young adults, dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD. Conclusion: Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin are positively associated with WBMD in community-dwelling older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young

    Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice

    Get PDF
    Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-Ξ³ production was not. Moreover, blockade of IFN-Ξ³ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis

    The Regulation of MS-KIF18A Expression and Cross Talk with Estrogen Receptor

    Get PDF
    This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERΞ±) which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERΞ± and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-ΞΊB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-percipitation (ChIP) assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10βˆ’8 M estrogen and 10βˆ’7M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERΞ± and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERΞ± is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro

    Genome-Wide Analyses of Recombination Prone Regions Predict Role of DNA Structural Motif in Recombination

    Get PDF
    HapMap findings reveal surprisingly asymmetric distribution of recombinogenic regions. Short recombinogenic regions (hotspots) are interspersed between large relatively non-recombinogenic regions. This raises the interesting possibility of DNA sequence and/or other cis- elements as determinants of recombination. We hypothesized the involvement of non-canonical sequences that can result in local non-B DNA structures and tested this using the G-quadruplex DNA as a model. G-quadruplex or G4 DNA is a unique form of four-stranded non-B DNA structure that engages certain G-rich sequences, presence of such motifs has been noted within telomeres. In support of this hypothesis, genome-wide computational analyses presented here reveal enrichment of potential G4 (PG4) DNA forming sequences within 25618 human hotspots relative to 9290 coldspots (p<0.0001). Furthermore, co-occurrence of PG4 DNA within several short sequence elements that are associated with recombinogenic regions was found to be significantly more than randomly expected. Interestingly, analyses of more than 50 DNA binding factors revealed that co-occurrence of PG4 DNA with target DNA binding sites of transcription factors c-Rel, NF-kappa B (p50 and p65) and Evi-1 was significantly enriched in recombination-prone regions. These observations support involvement of G4 DNA in recombination, predicting a functional model that is consistent with duplex-strand separation induced by formation of G4 motifs in supercoiled DNA and/or when assisted by other cellular factors

    Exercise and bone health across the lifespan

    Get PDF
    With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided
    • …
    corecore