49 research outputs found

    Influence of nonmagnetic dielectric spacers on the spin wave response of one-dimensional planar magnonic crystals

    Get PDF
    The one-dimensional planar magnonic crystals are usually fabricated as a sequence of stripes intentionally or accidentally separated by non-magnetic spacers. The influence of spacers on shaping the spin wave spectra is complex and still not completely clarified. We performed the detailed numerical studies of the one-dimensional single- and bi-component magnonic crystals comprised of a periodic array of thin ferromagnetic stripes separated by non-magnetic spacers. We showed that the dynamic dipolar interactions between the stripes mediated by non-magnetic spacer, even ultra-narrow, significantly shift up the frequency of the ferromagnetic resonance and simultaneously reduce the spin wave group velocity, which is manifested by the flattening of the magnonic band. We attributed these changes in the spectra to the modifications of dipolar pinning and shape anisotropy both dependent on the width of the spacers and the thickness of the stripes, as well as to the dynamical magnetic volume charges formed due to inhomogeneous spin wave amplitude

    Proposal for a standard micromagnetic problem: spin wave dispersion in a magnonic waveguide

    No full text
    In this paper, we propose a standard micromagnetic problem, of a nanostripe of permalloy. We study the magnetization dynamics and describe methods of extracting features from simulations. Spin wave dispersion curves, relating frequency and wave vector, are obtained for wave propagation in different directions relative to the axis of the waveguide and the external applied field. Simulation results using both finite element (Nmag) and finite difference (OOMMF) methods are compared against analytic results, for different ranges of the wave vector

    Magnonic crystals — prospective structures for shaping spin waves in nanoscale

    No full text
    We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one(1D), two- (2D) and three-dimensions (3D). We have solved Landau–Lifshitz equation with the use of plane wave method, finite element method in frequency domain and micromagnetic simulations in time domain to find the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves. We demonstrate the surface character of the Damon–Eshbach spin wave in 1D magnonic crystals and change of its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate. For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective damping of spin wave
    corecore