316 research outputs found

    Total orthotopic small bowel transplantation in swine under FK 506

    Get PDF
    Previous experimental studies in rodents and in dogs have established the efficacy of FK 506 in controlling the immunologic events following small bowel or multivisceral transplantation.1–5 To complete the assessment of FK 506 in experimental small bowel transplantation, we present here our experience with the frequently used swine model

    Exploring Factors Influencing Changes in Incidence and Severity of Multisystem Inflammatory Syndrome in Children

    Get PDF
    Multisystem inflammatory syndrome (MIS-C) is a rare condition associated with COVID-19 affecting children, characterized by severe and aberrant systemic inflammation leading to nonspecific symptoms, such as gastrointestinal, cardiac, respiratory, hematological, and neurological disorders. In the last year, we have experienced a progressive reduction in the incidence and severity of MIS-C, reflecting the worldwide trend. Thus, starting from the overall trend in the disease in different continents, we reviewed the literature, hypothesizing the potential influencing factors contributing to the reduction in cases and the severity of MIS-C, particularly the vaccination campaign, the spread of different SARS-CoV-2 variants (VOCs), and the changes in human immunological response. The decrease in the severity of MIS-C and its incidence seem to be related to a combination of different factors rather than a single cause. Maturation of an immunological memory to SARS-CoV-2 over time, the implication of mutations of key amino acids of S protein in VOCs, and the overall immune response elicited by vaccination over the loss of neutralization of vaccines to VOCs seem to play an important role in this change

    Nonlinear quantum model for atomic Josephson junctions with one and two bosonic species

    Full text link
    We study atomic Josephson junctions (AJJs) with one and two bosonic species confined by a double-well potential. Proceeding from the second quantized Hamiltonian, we show that it is possible to describe the zero-temperature AJJs microscopic dynamics by means of extended Bose-Hubbard (EBH) models, which include usually-neglected nonlinear terms. Within the mean-field approximation, the Heisenberg equations derived from such two-mode models provide a description of AJJs macroscopic dynamics in terms of ordinary differential equations (ODEs). We discuss the possibility to distinguish the Rabi, Josephson, and Fock regimes, in terms of the macroscopic parameters which appear in the EBH Hamiltonians and, then, in the ODEs. We compare the predictions for the relative populations of the Bose gases atoms in the two wells obtained from the numerical solutions of the two-mode ODEs, with those deriving from the direct numerical integration of the Gross-Pitaevskii equations (GPEs). Our investigations shows that the nonlinear terms of the ODEs are crucial to achieve a good agreement between ODEs and GPEs approaches, and in particular to give quantitative predictions of the self-trapping regime.Comment: Accepted for the publication in J. Phys. B: At. Mol. Opt. Phy

    Quantum diffusion with disorder, noise and interaction

    Get PDF
    Disorder, noise and interaction play a crucial role in the transport properties of real systems, but they are typically hard to control and study both theoretically and experimentally, especially in the quantum case. Here we explore a paradigmatic problem, the diffusion of a wavepacket, by employing ultra-cold atoms in a disordered lattice with controlled noise and tunable interaction. The presence of disorder leads to Anderson localization, while both interaction and noise tend to suppress localization and restore transport, although with completely different mechanisms. When only noise or interaction are present we observe a diffusion dynamics that can be explained by existing microscopic models. When noise and interaction are combined, we observe instead a complex anomalous diffusion. By combining experimental measurements with numerical simulations, we show that such anomalous behavior can be modeled with a generalized diffusion equation, in which the noise- and interaction-induced diffusions enter in an additive manner. Our study reveals also a more complex interplay between the two diffusion mechanisms in regimes of strong interaction or narrowband noise.Comment: 11 pages, 10 figure

    Localization from quantum interference in one-dimensional disordered potentials

    Full text link
    We show that the tails of the asymptotic density distribution of a quantum wave packet that localizes in the the presence of random or quasiperiodic disorder can be described by the diagonal term of the projection over the eingenstates of the disordered potential. This is equivalent of assuming a phase randomization of the off-diagonal/interference terms. We demonstrate these results through numerical calculations of the dynamics of ultracold atoms in the one-dimensional speckle and quasiperiodic potentials used in the recent experiments that lead to the observation of Anderson localization for matter waves [Billy et al., Nature 453, 891 (2008); Roati et al., Nature 453, 895 (2008)]. For the quasiperiodic case, we also discuss the implications of using continuos or discrete models.Comment: 5 pages, 3 figures; minor changes, references update

    Identification of Protein Tyrosine Phosphatase Receptor Gamma Extracellular Domain (sPTPRG) as a Natural Soluble Protein in Plasma

    Get PDF
    BACKGROUND:PTPRG is a widely expressed protein tyrosine phosphatase present in various isoforms. Peptides from its extracellular domain have been detected in plasma by proteomic techniques. We aim at characterizing the plasmatic PTPRG (sPTPRG) form and to identify its source.METHODOLOGY/PRINCIPAL FINDINGS:The expression of sPTPRG was evaluated in human plasma and murine plasma and tissues by immunoprecipitation and Western blotting. The polypeptides identified have an apparent Mr of about 120 kDa (major band) and 90 kDa (minor band) respectively. Full length PTPRG was identified in the 100.000 7g pelleted plasma fraction, suggesting that it was present associated to cell-derived vesicles (exosomes). The release of sPTPRG by HepG2 human hepatocellular carcinoma cell line was induced by ethanol and sensitive to metalloproteinase and not to Furin inhibitors. Finally, increased levels of the plasmatic 3c120 kDa isoform were associated with the occurrence of liver damage.CONCLUSIONS:These results demonstrate that sPTPRG represent a novel candidate protein biomarker in plasma whose increased expression is associated to hepatocyte damage. This observation could open a new avenue of investigation in this challenging field

    In‐Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy

    Get PDF
    Sickle cell disease (SCD) is a condition of functional hypo‐/a‐splenism in which predisposition to bacterial infections is only a facet of a wide spectrum of immune‐dysregulation disorders forming the clinical expression of a peculiar immunophenotype. The objective of this study was to perform an in‐depth immunophenotypical characterization of SCD pediatric patients, looking for plausible correlations between immunological biomarkers, the impact of hydroxyurea (HU) treatment and clinical course. This was an observational case–control study including 43 patients. The cohort was divided into two main groups, SCD subjects (19/43) and controls (24/43), differing in the presence/absence of an SCD diagnosis. The SCD group was split up into HU+ (12/19) and HU− (7/19) subgroups, respectively receiving or not a concomitant HU treatment. The principal outcomes measured were differences in the immunophenotyping between SCD patients and controls through chi‐squared tests, t‐tests, and Pearson’s correlation analysis between clinical and immunological parameters. Leukocyte and neutrophil increase, T‐cell depletion with prevalence of memory T‐cell compartment, NK and B‐naïve subset elevation with memory and CD21low B subset reduction, and IgG expansion, significantly distinguished the SCD HU− subgroup from controls, with naïve T cells, switched‐memory B cells and IgG maintaining differences between the SCD HU+ group and controls (p‐value of <0.05). The mean CD4+ central‐memory T‐cell% count was the single independent variable showing a positive correlation with vaso‐occlusive crisis score in the SCD group (Pearson’s R = 0.039). We report preliminary data assessing plausible clinical implications of baseline and HU‐related SCD immunophenotypical alterations, which need to be validated in larger samples, but potentially affecting hypo‐/a‐splenism immuno‐chemoprophylactic recommendations

    2,3,4-Tribromo­thio­phene

    Get PDF
    In the title compound, C4HBr3S, there are two essentially planar mol­ecules in the asymmetric unit. In the crystal structure, bifurcated C—H⋯Br hydrogen bonds link the mol­ecules into chains. Weak Br⋯Br inter­actions [Br⋯Br = 3.634 (4)–3.691 (4) Å] then lead to undulating sheets in the bc plane

    Atomic Josephson junction with two bosonic species

    Full text link
    We study an atomic Josephson junction (AJJ) in presence of two interacting Bose-Einstein condensates (BECs) confined in a double well trap. We assume that bosons of different species interact with each other. The macroscopic wave functions of the two components obey to a system of two 3D coupled Gross-Pitaevskii equations (GPE). We write the Lagrangian of the system, and from this we derive a system of coupled ordinary differential equations (ODE), for which the coupled pendula represent the mechanic analogous. These differential equations control the dynamical behavior of the fractional imbalance and of the relative phase of each bosonic component. We perform the stability analysis around the points which preserve the symmetry and get an analytical formula for the oscillation frequency around the stable points. Such a formula could be used as an indirect measure of the inter-species s-wave scattering length. We also study the oscillations of each fractional imbalance around zero and non zero - the macroscopic quantum self-trapping (MQST) - time averaged values. For different values of the inter-species interaction amplitude, we carry out this study both by directly solving the two GPE and by solving the corresponding coupled pendula equations. We show that, under certain conditions, the predictions of these two approaches are in good agreement. Moreover, we calculate the crossover value of the inter-species interaction amplitude which signs the onset of MQST.Comment: Accepted for the publication in J. Phys. B: At. Mol. Opt. Phy
    • 

    corecore