798 research outputs found

    A new perspective on the Faddeev equations and the KˉNN\bar{K}NN system from chiral dynamics and unitarity in coupled channels

    Full text link
    We review recent work concerning the KˉN\bar{K}N interaction and Faddeev equations with chiral dynamics which allow us to look at the KˉNN\bar{K}NN from a different perspective and pay attention to problems that have been posed in previous studies on the subject. We show results which provide extra experimental evidence on the existence of two Λ(1405)\Lambda(1405) states. We then show the findings of a recent approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. With this information in mind we use an approximation to the Faddeev equations within the fixed center approximation to study the KˉNN\bar{K}NN system, providing answers within this approximation to questions that have been brought before and evaluating binding energies and widths of this three body system. As a novelty with respect to recent work on the topic we find a bound state of the system with spin S=1, like a bound state of Kˉ\bar{K}-deuteron, less bound that the one of S=0, where all recent efforts have been devoted. The width is relatively large in this case, suggesting problems in a possible experimental observation.Comment: 18 pages, 7 figures, one misprint corrected, Nuclear Physics A in pres

    Adiabatic quantum pump in the presence of external ac voltages

    Full text link
    We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical rectification. In addition to two known terms we find a third novel contribution which arises from the interference of the ac currents generated by the external potentials and the ac currents generated by the pump. The interference contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this interference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the current generated by the oscillating potentials, and the ac current due to the variation of the charge of the frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore