297 research outputs found

    Periods for flat algebraic connections

    Get PDF
    In previous work, we established a duality between the algebraic de Rham cohomology of a flat algebraic connection on a smooth quasi-projective surface over the complex numbers and the rapid decay homology of the dual connection relying on a conjecture by C. Sabbah, which has been proved recently by T. Mochizuki for algebraic connections in any dimension. In the present article, we verify that Mochizuki's results allow to generalize these duality results to arbitrary dimensions also

    Moment determinants as isomonodromic tau functions

    Full text link
    We consider a wide class of determinants whose entries are moments of the so-called semiclassical functionals and we show that they are tau functions for an appropriate isomonodromic family which depends on the parameters of the symbols for the functionals. This shows that the vanishing of the tau-function for those systems is the obstruction to the solvability of a Riemann-Hilbert problem associated to certain classes of (multiple) orthogonal polynomials. The determinants include Haenkel, Toeplitz and shifted-Toeplitz determinants as well as determinants of bimoment functionals and the determinants arising in the study of multiple orthogonality. Some of these determinants appear also as partition functions of random matrix models, including an instance of a two-matrix model.Comment: 24 page

    Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry

    Full text link
    We introduce the notion of Wall-Crossing Structure and discuss it in several examples including complex integrable systems, Donaldson-Thomas invariants and Mirror Symmetry. For a big class of non-compact Calabi-Yau 3-folds we construct complex integrable systems of Hitchin type with the base given by the moduli space of deformations of those 3-folds. Then Donaldson-Thomas invariants of the Fukaya category of such a Calabi-Yau 3-fold can be (conjecturally) described in two more ways: in terms of the attractor flow on the base of the corresponding complex integrable system and in terms of the skeleton of the mirror dual to the total space of the integrable system. The paper also contains a discussion of some material related to the main subject, e.g. Betti model of Hitchin systems with irregular singularities, WKB asymptotics of connections depending on a small parameter, attractor points in the moduli space of complex structures of a compact Calabi-Yau 3-fold, relation to cluster varieties, etc.Comment: 111 pages, accepted for Proceedings of the Cetraro Conference "Mirror Symmetry and Tropical Geometry" (Lecture Notes in Mathematics

    On Gauge Invariance and Spontaneous Symmetry Breaking

    Get PDF
    We show how the widely used concept of spontaneous symmetry breaking can be explained in causal perturbation theory by introducing a perturbative version of quantum gauge invariance. Perturbative gauge invariance, formulated exclusively by means of asymptotic fields, is discussed for the simple example of Abelian U(1) gauge theory (Abelian Higgs model). Our findings are relevant for the electroweak theory, as pointed out elsewhere.Comment: 13 pages, latex, no figure

    Non-Schlesinger Deformations of Ordinary Differential Equations with Rational Coefficients

    Full text link
    We consider deformations of 2Ă—22\times2 and 3Ă—33\times3 matrix linear ODEs with rational coefficients with respect to singular points of Fuchsian type which don't satisfy the well-known system of Schlesinger equations (or its natural generalization). Some general statements concerning reducibility of such deformations for 2Ă—22\times2 ODEs are proved. An explicit example of the general non-Schlesinger deformation of 2Ă—22\times2-matrix ODE of the Fuchsian type with 4 singular points is constructed and application of such deformations to the construction of special solutions of the corresponding Schlesinger systems is discussed. Some examples of isomonodromy and non-isomonodromy deformations of 3Ă—33\times3 matrix ODEs are considered. The latter arise as the compatibility conditions with linear ODEs with non-singlevalued coefficients.Comment: 15 pages, to appear in J. Phys.

    A construction of Frobenius manifolds with logarithmic poles and applications

    Full text link
    A construction theorem for Frobenius manifolds with logarithmic poles is established. This is a generalization of a theorem of Hertling and Manin. As an application we prove a generalization of the reconstruction theorem of Kontsevich and Manin for projective smooth varieties with convergent Gromov-Witten potential. A second application is a construction of Frobenius manifolds out of a variation of polarized Hodge structures which degenerates along a normal crossing divisor when certain generation conditions are fulfilled.Comment: 46 page

    Blowing up generalized Kahler 4-manifolds

    Full text link
    We show that the blow-up of a generalized Kahler 4-manifold in a nondegenerate complex point admits a generalized Kahler metric. As with the blow-up of complex surfaces, this metric may be chosen to coincide with the original outside a tubular neighbourhood of the exceptional divisor. To accomplish this, we develop a blow-up operation for bi-Hermitian manifolds.Comment: 16 page

    The transition between the gap probabilities from the Pearcey to the Airy process; a Riemann-Hilbert approach

    Get PDF
    We consider the gap probability for the Pearcey and Airy processes; we set up a Riemann--Hilbert approach (different from the standard one) whereby the asymptotic analysis for large gap/large time of the Pearcey process is shown to factorize into two independent Airy processes using the Deift-Zhou steepest descent analysis. Additionally we relate the theory of Fredholm determinants of integrable kernels and the theory of isomonodromic tau function. Using the Riemann-Hilbert problem mentioned above we construct a suitable Lax pair formalism for the Pearcey gap probability and re-derive the two nonlinear PDEs recently found and additionally find a third one not reducible to those.Comment: 43 pages, 7 figures. Final version with minor changes. Accepted for publication on International Mathematical Research Notice

    Can billiard eigenstates be approximated by superpositions of plane waves?

    Full text link
    The plane wave decomposition method (PWDM) is one of the most popular strategies for numerical solution of the quantum billiard problem. The method is based on the assumption that each eigenstate in a billiard can be approximated by a superposition of plane waves at a given energy. By the classical results on the theory of differential operators this can indeed be justified for billiards in convex domains. On the contrary, in the present work we demonstrate that eigenstates of non-convex billiards, in general, cannot be approximated by any solution of the Helmholtz equation regular everywhere in R2\R^2 (in particular, by linear combinations of a finite number of plane waves having the same energy). From this we infer that PWDM cannot be applied to billiards in non-convex domains. Furthermore, it follows from our results that unlike the properties of integrable billiards, where each eigenstate can be extended into the billiard exterior as a regular solution of the Helmholtz equation, the eigenstates of non-convex billiards, in general, do not admit such an extension.Comment: 23 pages, 5 figure

    The Ernst equation and ergosurfaces

    Full text link
    We show that analytic solutions \mcE of the Ernst equation with non-empty zero-level-set of \Re \mcE lead to smooth ergosurfaces in space-time. In fact, the space-time metric is smooth near a "Ernst ergosurface" EfE_f if and only if \mcE is smooth near EfE_f and does not have zeros of infinite order there.Comment: 23 pages, 4 figures; misprints correcte
    • …
    corecore