13 research outputs found

    Background removal from global auroral images: Data-driven dayglow modeling

    Get PDF
    Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment. However, the cameras are sensitive not only to auroral emissions produced by precipitating particles, but also to dayglow emissions produced by photoelectrons induced by sunlight. Nightglow emissions and scattered sunlight can contribute to the background signal. To fully utilize such images in space science, background contamination must be removed to isolate the auroral signal. Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics. The approach is robust, flexible, and iteratively deselects outliers, such as auroral emissions. The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow. We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission. The method can be applied to historical missions and is relevant for upcoming missions, such as the Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission

    The Lompe code: A Python toolbox for ionospheric data analysis

    Get PDF
    A recent paper by Laundal et al. (2022c) presented a new technique to combine all available measurements of polar ionospheric electrodynamics; magnetic field measurements from ground and space, ionospheric convection data from radars and satellites, and conductance measurements; to a full 2D map within analysis regions of arbitrary resolution and extent. The technique, called Local Mapping of Polar Ionospheric Electrodynamics (Lompe), is implemented in Python (Laundal et al., 2022a). The Lompe technique combines spherical elementary current system analysis, finite element analysis on a cubed-sphere projection, the use of empirical models like the International Geomagnetic Reference Field, and visualization tools. In this paper, we go through these different components of the Lompe code and show how they are useful on their own, for example in the analysis of ground magnetometer data or data from the upcoming Electrojet Zeeman Imaging Explorer mission. We also demonstrate how to use the Lompe code to produce a coherent picture of ionospheric electrodynamics

    Invasive toads shift behavioral traits to find water

    No full text
    Water-finding and water-maintenance behaviors in Guttural Toads, Sclerophrys gutturalis, from their native population in Durban and an invasive population in Cape Town

    Spatial resolution in inverse problems:the EZIE satellite mission

    No full text
    Abstract Inverse modeling has become one of the primary methods for studying ionospheric electrodynamics, especially when using magnetic field measurements from below the ionosphere. We present a method for quantifying the spatial resolution in an inverse model for non-uniformly sampled spatial data. This method provides a tool for assessing if a model can resolve the physical phenomena of interest. We quantify the spatial resolution for the Spherical Elementary Current System basis functions to model the ionospheric dynamics. Our results apply to models with spatially confined model parameters, unlike spherical harmonics where the model parameters describe the amplitude of global surface functions. The method is demonstrated for the upcoming Electrojet Zeeman Imaging Explorer cubesat mission which will provide spatially distributed remote sensing measurements of the magnetic field in the mesosphere. We show that, including measurements from a single ground magnetometer can significantly improve the spatial resolution. However, the impact of including a ground magnetometer depends on the relative position of the station with respect to the mesospheric measurements. In addition, a method for reducing two regularization parameters to one is presented. Reducing the amount of regularization parameters simplifies the optimization problem and facilitates a fair comparison between the models with and without a ground magnetometer

    Electrojet estimates from mesospheric magnetic field measurements

    No full text
    Abstract The auroral electrojet is traditionally measured remotely with magnetometers on ground or in low Earth orbit (LEO). The sparse distribution of measurements, combined with a vertical distance of some 100 km to ground and typically >300 km to LEO satellites, means that smaller scale sizes can't be detected. Because of this, our understanding of the spatiotemporal characteristics of the electrojet is incomplete. Recent advances in measurement technology give hope of overcoming these limitations by multi-point remote detections of the magnetic field in the mesosphere, very close to the electrojet. We present a prediction of the magnitude of these disturbances, inferred from the spatiotemporal characteristics of magnetic field-aligned currents. We also discuss how Zeeman magnetic field sensors (Yee et al., 2021) onboard the Electrojet Zeeman Imaging Explorer satellites will be used to essentially image the equivalent current at unprecedented spatial resolution. The electrojet imaging is demonstrated by combining carefully simulated measurements with a spherical elementary current representation using a novel inversion scheme

    COVID-19 As A Chronic Stressor And The Importance Of Individual Identity: A Data-Driven Look At Academic Productivity During The Pandemic

    No full text
    The COVID-19 pandemic impacted personal and professional life. For academics, research, teaching, and service tasks were upended and we all had to navigate the altered landscape. However, some individuals faced a disproportionate burden, particularly academics with minoritized identities or those who were early career, were caregivers, or had intersecting identities. As comparative endocrinologists, we determine how aspects of individual and species-level variation influence response to, recovery from, and resilience in the face of stressors. Here, we flip that framework and apply an integrative biological lens to the impact of the COVID-19 chronic stressor on our endocrine community. We address how the pandemic altered impact factors of academia (e.g., scholarly products) and relatedly, how factors of impact (e.g., sex, gender, race, career stage, caregiver status, etc.) altered the way in which individuals could respond. We predict the pandemic will have long-term impacts on the population dynamics, composition, and landscape of our academic ecosystem. Impact factors of research, namely journal submissions, were altered by COVID-19, and women authors saw a big dip. We discuss this broadly and then report General and Comparative Endocrinology (GCE) manuscript submission and acceptance status by gender and geographic region from 2019 to 2023. We also summarize how the pandemic impacted individuals with different axes of identity, how academic institutions have responded, compile proposed solutions, and conclude with a discussion on what we can all do to (re)build the academy in an equitable way. At GCE, the first author positions had gender parity, but men outnumbered women at the corresponding author position. Region of manuscript origin mattered for submission and acceptance rates, and women authors from Asia and the Middle East were the most heavily impacted by the pandemic. The number of manuscripts submitted dropped after year 1 of the pandemic and has not yet recovered. Thus, COVID-19 was a chronic stressor for the GCE community
    corecore