678 research outputs found

    Quantum gates between capacitively coupled double quantum dot two-spin qubits

    Full text link
    We study the two-qubit controlled-not gate operating on qubits encoded in the spin state of a pair of electrons in a double quantum dot. We assume that the electrons can tunnel between the two quantum dots encoding a single qubit, while tunneling between the quantum dots that belong to different qubits is forbidden. Therefore, the two qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find that entangling two-qubit gates can be performed by the electrical biasing of quantum dots and/or tuning of the tunneling matrix elements between the quantum dots within the qubits. The entangling interaction can be controlled by tuning the bias through the resonance between the singly-occupied and doubly-occupied singlet ground states of a double quantum dot.Comment: 12 pages, 7 figure

    Exchange-based CNOT gates for singlet-triplet qubits with spin orbit interaction

    Full text link
    We propose a scheme for implementing the CNOT gate over qubits encoded in a pair of electron spins in a double quantum dot. The scheme is based on exchange and spin orbit interactions and on local gradients in Zeeman fields. We find that the optimal device geometry for this implementation involves effective magnetic fields that are parallel to the symmetry axis of the spin orbit interaction. We show that the switching times for the CNOT gate can be as fast as a few nanoseconds for realistic parameter values in GaAs semiconductors. Guided by recent advances in surface codes, we also consider the perpendicular geometry. In this case, leakage errors due to spin orbit interaction occur but can be suppressed in strong magnetic fields

    Development of fruit diseases of microbial origin during storage at treatment with antioxidant compositions

    Get PDF
    Встановлено, що досліджувані антиоксидантні композиції пригнічували розвиток епіфітних мікроорганізмів на поверхні плодів протягом зберігання. Було зафіксовано підвищення їх стрес-толерантності. Результати експерименту доводять зменшення рівня щодобових втрат від мікробіологічних захворювань у 2…3,5 разів. Найбільший позитивний ефект при зберіганні усіх видів плодів був отриманий при обробці композицією на основі дистинолу і лецитину

    Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome

    Get PDF
    Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.Peer reviewe

    Universal Quantum Computation through Control of Spin-Orbit Coupling

    Full text link
    We propose a method for quantum computation which uses control of spin-orbit coupling in a linear array of single electron quantum dots. Quantum gates are carried out by pulsing the exchange interaction between neighboring electron spins, including the anisotropic corrections due to spin-orbit coupling. Control over these corrections, even if limited, is sufficient for universal quantum computation over qubits encoded into pairs of electron spins. The number of voltage pulses required to carry out either single qubit rotations or controlled-Not gates scales as the inverse of a dimensionless measure of the degree of control of spin-orbit coupling.Comment: 4 pages, 3 figures (minor revision, references added

    The higher-order magnetic skyrmions in non-uniform magnetic fields

    Full text link
    For 2D Hubbard model with spin-orbit Rashba coupling in external magnetic field the structure of effective spin interactions is studied in the regime of strong electron correlations and at half-filling. It is shown that in the third order of perturbation theory, the scalar and vector chiral spin-spin interactions of the same order arise. The emergence of the latter is due to orbital effects of magnetic field. It is shown that for nonuniform fields, scalar chiral interaction can lead to stabilization of axially symmetric skyrmion states with arbitrary topological charges. Taking into account the hierarchy of effective spin interactions, an analytical theory on the optimal sizes of such states -- the higher-order magnetic skyrmions -- is developed for axially symmetric magnetic fields of the form h(r)rβh(r) \sim r^{\beta} with βR\beta \in \mathbb{R}.Comment: 20 pages, 10 figures, 75 reference
    corecore