12 research outputs found

    Deep crustal structure of the Adare and Northern Basins, Ross Sea, Antarctica, from sonobuoy data

    No full text
    Extension associated with ultraslow seafloor spreading within the Adare Basin, in oceanic crust just north of the continental shelf in the Ross Sea, Antarctica, extended south into the Northern Basin. Magnetic and gravity anomaly data suggest continuity of crustal structure across the continental shelf break that separates the Adare and Northern Basins. We use sonobuoy refraction data and multi-channel seismic (MCS) reflection data collected during research cruise NBP0701, including 71 new sonobuoy records, to provide constraints on crustal structure in the Adare and Northern Basins. Adjacent 1D sonobuoy profiles along several MCS lines reveal deep crustal structure in the vicinity of the continental shelf break, and agree with additional sonobuoy data that document fast crustal velocities (6000–8000 m/s) at shallow depths (1–6 km below sea level) from the Adare Basin to the continental shelf, a structure consistent with that of other ultraslow-spread crust. Our determination of crustal structure in the Northern Basin only extends through sedimentary rock to the basement rock, and so cannot help to distinguish between different hypotheses for formation of the basin

    Constraints on Jalisco Block Motion and Tectonics of the Guadalajara Triple Junction from 1998–2001 Campaign GPS Data

    No full text
    A GPS campaign network in the state of Jalisco was occupied for ~36 h per station most years between 1995 and 2005; we use data from 1998–2001 to investigate tectonic motion and interseismic deformation in the Jalisco area with respect to the North America plate. The twelve stations used in this analysis provide coverage of the Jalisco Block and adjacent North America plate, and show a pattern of motion that implies some contribution to Jalisco Block boundary deformation from both tectonic motion and interseismic deformation due to the offshore 1995 earthquake. The consistent direction and magnitude of station motion on the Jalisco Block with respect to the North America reference frame, ~2 mm/year to the southwest (95% confidence level), perhaps can be attributed to tectonic motion. However, some station velocities within and across the boundaries of the Jalisco Block are also non-zero (95% confidence level), and the overall pattern of station velocities indicates both viscoelastic response to the 1995 earthquake and partial coupling of the subduction interface (together termed "interseismic deformation"). Our results show motion across the northern Colima rift, the eastern boundary of the Jalisco Block, which is likely to be sinistral oblique extension rather than pure extension. We constrain extension across both the Colima rift and the northeastern boundary of the Jalisco Block, the Tepic- Zacoalco rift, to ≤8 mm/year (95% confidence level), slow compared to relative rates of motion at nearby plate boundaries

    Plate tectonics on ice

    No full text
    corecore