2,051 research outputs found
Iron based superconductors: magnetism, superconductivity and electronic structure
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the
electronic structure of quasi-two-dimensional crystals, which are crucial for
the formation of spin and charge ordering and determine the mechanisms of
electron-electron interaction, including the superconducting pairing. The newly
discovered iron based superconductors (FeSC) promise interesting physics that
stems, on one hand, from a coexistence of superconductivity and magnetism and,
on the other hand, from complex multi-band electronic structure. In this review
I want to give a simple introduction to the FeSC physics, and to advocate an
opinion that all the complexity of FeSC properties is encapsulated in their
electronic structure. For many compounds, this structure was determined in
numerous ARPES experiments and agrees reasonably well with the results of band
structure calculations. Nevertheless, the existing small differences may help
to understand the mechanisms of the magnetic ordering and superconducting
pairing in FeSC.Comment: Invited Revie
Optical signature of sub-gap absorption in the superconducting state of Ba(Fe,Co)2As2
The optical conductivity of Ba(FeCo)As shows a
clear signature of the superconducting gap, but a simple -wave description
fails in accounting for the low frequency response. This task is achieved by
introducing an extra Drude peak in the superconducting state representing
sub-gap absorption, other than thermally broken pairs. This extra peak and the
coexisting -wave response respect the total sum rule indicating a common
origin for the carriers. We discuss the possible origins for this absorption as
(i) quasiparticles due to pair-breaking from interband impurity scattering in a
two band gap symmetry model, which includes (ii) the possible
existence of impurity levels within an isotropic gap model; or (iii) an
indication that one of the bands is highly anisotropic.Comment: 5 pages, 4 figure
Subgap states in dirty superconductors and their effect on dephasing in Josephson qubits
We present a theory of the subgap tails of the density of states in a
diffusive superconductor containing magnetic impurities. We show that the
subgap tails have two contributions: one arising from mesoscopic gap
fluctuations, previously discussed by Lamacraft and Simons, and the other
associated to the long-wave fluctuations of the concentration of magnetic
impurities. We study the latter both in small superconducting grains and in
bulk systems [], and establish the dimensionless parameter that
controls which of the two contributions dominates the subgap tails. We observe
that these contributions are related to each other by dimensional reduction. We
apply the theory to estimate the effects of a weak concentration of magnetic
impurities [] on the phase coherence of Josephson
qubits. We find that at these typical concentrations, magnetic impurities are
relevant for the dephasing in large qubits, designed around a
scale, where they limit the quality factor to be .Comment: 13 pages, 1 figur
Nonequilibrium transport via spin-induced sub-gap states in superconductor/quantum dot/normal metal cotunnel junctions
We study low-temperature transport through a Coulomb blockaded quantum dot
(QD) contacted by a normal (N), and a superconducting (S) electrode. Within an
effective cotunneling model the conduction electron self energy is calculated
to leading order in the cotunneling amplitudes and subsequently resummed to
obtain the nonequilibrium T-matrix, from which we obtain the nonlinear
cotunneling conductance. For even occupied dots the system can be conceived as
an effective S/N-cotunnel junction with subgap transport mediated by Andreev
reflections. The net spin of an odd occupied dot, however, leads to the
formation of sub-gap resonances inside the superconducting gap which gives rise
to a characteristic peak-dip structure in the differential conductance, as
observed in recent experiments.Comment: 13 pages, 13 figures (new version contains reformulations and
corrections of typos etc
The photon absorption edge in superconductors and gapped 1D systems
Opening of a gap in the low-energy excitations spectrum affects the power-law
singularity in the photon absorption spectrum . In the normal state,
the singularity, , is
characterized by an interaction-dependent exponent . On the contrary,
in the supeconducting state the divergence, , is
interaction-independent, while threshold is shifted, ; the ``normal-metal'' form of resumes
at . If the core
hole is magnetic, it creates in-gap states; these states transform drastically
the absorption edge. In addition, processes of scattering off the magnetic core
hole involving spin-flip give rise to inelastic absorption with one or several
{\it real} excited pairs in the final state, yielding a structure of peaks in
at multiples of above the threshold frequency. The above
conclusions apply to a broad class of systems, e.g., Mott insulators, where a
gap opens at the Fermi level due to the interactions.Comment: 6 pages, 5 figures; published versio
An alternative search for the electron capture of Te-123
A search for the electron capture of Te-123 has been performed using CdZnTe
detectors. After a measuring time of 195 h no signal could be found resulting
in a lower half-life limt of yrs (95 % CL) for
this process. This clearly discriminates between existing experimental results
which differ by six orders of magnitude and our data are in strong favour of
the result with longer half-lifes.Comment: 2 pages, 2 eps-figures, reanalysis of data set
Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling
There exists a variety of proposals to transform a conventional s-wave
superconductor into a topological superconductor, supporting Majorana fermion
mid-gap states. A necessary ingredient of these proposals is strong spin-orbit
coupling. Here we propose an alternative system consisting of a one-dimensional
chain of magnetic nanoparticles on a superconducting substrate. No spin-orbit
coupling in the superconductor is needed. We calculate the topological quantum
number of a chain of finite length, including the competing effects of disorder
in the orientation of the magnetic moments and in the hopping energies, to
identify the transition into the topologically nontrivial state (with Majorana
fermions at the end points of the chain).Comment: 7 pages, 5 figure
Tests of Scintillator Tiles for the Technological Prototype of Highly Granular Hadron Calorimeter
A new technological prototype of the highly granular hadron calorimeter for future collider experiments is being developed by the CALICE collaboration. The proposed baseline design of active elements considers scintillator tiles with a silicon photomultiplier readout. The light yield and uniformity of response of two tiles with dimple geometry from different producers were measured. The technology proposed for the ILD detector was used: each tile was individually wrapped in the reflecting foil and the SiPm was coupled directly to the dimple side of the scintillator tile. The measured response to minimum ionizing particle is almost twice better for BICRON408 scintillator than for polystyrene-based scintillator, while the estimated uniformity of response is better for the polystyrene-based scintillator tile produced by injection molding
- …