1,536 research outputs found

    Electrodynamics of Media

    Get PDF
    Contains reports on one research project.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Air Force Cambridge Research Laboratories Contract F19628-70-C-006

    An investigation of the visual sampling behaviour of human observers

    Get PDF
    Visual sampling behavior of human observers for aerospace vehicle design application

    Electrodynamics of Media

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U.S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300U.S. Air Force Cambridge Research Laboratories Contract F19628-70-C -006

    Cooperative games with overlapping coalitions

    No full text
    In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitionsā€”or overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure

    Determination of cutting forces based on DMG MORI CTX300 ecoline CNC lathe drive power data

    Full text link
    Modern machine building needs demand for machines and control systems which provide higher accuracy of machining. For this purpose, setup methods are being researched and accuracy of machines and devices is being improved. The main topic of this paper is a tool path predistortion system which is necessary for improvement of shaft turning accuracy when a steady rest cannot be used on a CNC machines. Calculation of such tool path requires one to know the cutting force during turning on a CNC lathe. The research in question allowed to determine the dependence of cutting force during turning on the power consumed by the feed drive, cutting depth, cutting velocity, and feed value. An equation for further calculation applicable to a specific lathe in the turning process was derived. This equation serves as basis for adaptive turning of shafts and other parts with the aid of a mathematical model, which must account for the cutting force. Application of this formula in a CNC controlled lathe's parametric program will provide for higher accuracy of turning without special devices. Ā© Published under licence by IOP Publishing Ltd

    False-Name Manipulation in Weighted Voting Games is Hard for Probabilistic Polynomial Time

    Full text link
    False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Analogously to this splitting problem, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. Aziz et al. [ABEP11] analyze the problem of whether merging or splitting players in weighted voting games is beneficial in terms of the Shapley-Shubik and the normalized Banzhaf index, and so do Rey and Rothe [RR10] for the probabilistic Banzhaf index. All these results provide merely NP-hardness lower bounds for these problems, leaving the question about their exact complexity open. For the Shapley--Shubik and the probabilistic Banzhaf index, we raise these lower bounds to hardness for PP, "probabilistic polynomial time", and provide matching upper bounds for beneficial merging and, whenever the number of false identities is fixed, also for beneficial splitting, thus resolving previous conjectures in the affirmative. It follows from our results that beneficial merging and splitting for these two power indices cannot be solved in NP, unless the polynomial hierarchy collapses, which is considered highly unlikely
    • ā€¦
    corecore