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1. Introduction

This report presents some preliminary experimental results that have been obtained

in gain studies involving the TEA CO 2 laser. Two aspects of the gain of a TEA laser

amplifier are being studied: (i) the peak gain and its dependence on the total pressure

and the partial pressures of the component gases; and (ii) the temporal behavior of the

gain following an excitation current pulse and its dependence on the total pressure and

partial pressures of the component gases.
1-5

Peak gain measurements have been and are being made by others with very wide

ranging results - factors of 5 in population inversion. 4 ', 5 The decay of the gain coef-

ficient (which is proportional to the logarithm of the measured gain and to the population

inversion) vs time following an excitation pulse should have an exponential behavior.
6-8

Fluorescence studies indicate that the time constant of the gain coefficient decay

should be linearly proportional to pressure, with the proportionality constant depen-

dent upon the component gas ratios. This is explained by the fact that collisional

de-excitation processes that are linearly dependent on pressure dominate over radiative

relaxation in the relaxation of the populations.
9

The equations relevant to this discussion are

Gain = exp (aL), (1)

where L is the length of the amplifier, and a is the gain coefficient,

2a = 1 2u gZ(N 2 /g2 - N 1 /g) T/E c. (2)

Here, c, h, and E are the speed of light, Planck's constant (divided by 2rr), and the

dielectric constant; T 2 is the phase interruption time; N2 and N1 are the population
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densities of the upper and lower states; g 2 and gl are the degeneracies of the upper

and lower states (approximately equal in this case); 012 is the frequency corresponding

to the energy difference between the upper and lower states; and u is the dipole moment

between the upper and lower states. It is expected from consideration of the excitation

and de-excitation mechanisms that N1 reaches an equilibrium value as the gain reaches

its peak and that the decay of the gain (and population inversion) is a function of the

relaxation rate of the upper laser level.

The experimental arrangement for the gain measurements involves passing the

attenuated output of a cw, low-pressure, stable CO 2 probe laser (attenuated to -450 mW)

through a 1-m, TEA amplifier containing flowing N 2, CO Z , and He. The cathode of the

amplifier, 4.45 cm in diameter, is made up of 171 equally spaced, 1 k£2 resistors, and

the anode is a brass rod. The gap space between the resistor leads of the cathode and

the anode is 2. 54 cm. A spark-gap trigger circuit with 0. 025 [IF capacitance charged

to 17. 5 kV is used to excite the amplifier. The attenuator insures that no saturation

takes place. The intensity of the output of the amplifier, after it has passed through

a filter, is monitored by using a fast rise-time (60 ns with our termination, 1 ns with

a 50 0 termination), gold-doped germanium detector. The filter is necessary to block

out extraneous radiation which gives misleadingly high peak gain measurements. This

radiation is 4.3 m fluorescence given off by the 00n CO2 energy level chain. It is

detectable because the detector is approximately 200 times more sensitive to 4. 3 km

than 10. 6 ktm radiation because the excited state of the gas in the discharge decreases

radiation trapping, and because of the focusing involved in the detection scheme.

A steady-state DC intensity (within 5-10%) is established first with the amplifier

tube empty and then with the amplifier at the desired operating conditions; these

intensities differ typically by 5-10% because of absorption. The gain of the amplifier

as a function of time following a pulsing of the amplifier is determined from the

DC levels and the detector output. The equation for the gain measurement is

Gain = (I +i(t))/I , (3)

where I and I' are the DC detector current outputs with the amplifier empty and full,
o o

respectively, and i(t) is the time-variant part of the current that results from the

excitation of the amplifier. A labelled sketch of a typical output trace following a

pulsing of the amplifier is shown in Fig. V-i. Note that Eq. 3 gives the correct

absorption after the steady state is re-established. A pressure gauge (Wallace-Tiernan)

and flow tubes (Matheson 602 and 603) are used to determine the total gas pressure and

the partial pressures of the nitrogen, carbon dioxide, and helium component gases.

Figure V-2 shows pictures of the time-variant detector output (upper trace) and

the TEA excitation current (lower trace) at a pressure of 350 Torr with a ratio of

N :COZ:He of 1:2:12. The upper trace has a 20 is/cm time scale, and the lower trace

QPR No. 102



1

Fig. V-1. Sketch of typical detector output following amplifier excitation.

Fig. V-2.

Time-variant detector output (upper trace)
and excitation current (lower trace).
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Fig. V-3. Peak gain vs pressure for various component gas partial
pressure ratios.
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Fig. V-5. Decay of the In (In (Gain)), (that is, In (aL)) as a function of time.
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a 2 is/cm scale. The peak of the discharge current is -600 A (total current).

Figure V-3 is a plot of the peak gain against pressure for various gas ratios. The

gas ratios also correspond to flow rates, with a basic unit (the 1 in 1:2: 12, etc.) of

300 cm 3 /min at all pressures except 75 Torr, where the basic unit is 150 cm 3 /min.

The points plotted are the averages of the maxima and minima peak gains obtained

over 6 pulses at a pulsing rate of 126 times/min. The trend, with some exceptions, is

toward increased gain with lower pressures. The variation of the peak gain with pres-

sure indicates that the population inversion is not proportional to pressure; if it were,

the peak gain would be independent of pressure (see Eq. 2), as T 2 is inversely propor-

tional to pressure for constant component gas ratios. The discharge is mainly a glow

discharge with more arcing coming in with increasing pressure and with an increasing

proportion of CO . The excitation current pulse shortens and its peak increases with

decreasing pressure.

Figure V-4 is a plot of the natural logarithm of the gain against time at 350 Torr

with a 1:2:12 ratio. This curve, from Eq. 2, is proportional to the gain coefficient, a,

and hence, to the population inversion, a has an approximately exponential decay as is

indicated by the plot of the natural logarithm of aL (in (ln (Gain)) in Fig. V-5. This plot

yields a decay time for the upper laser state (following the gain peak) of approximately

37 ps - or a rate constant of 77 sec-1/Torr for the given gas ratios. This is very
-1

different from the 350 sec-1 /Torr that has been obtained (from fluorescence mea-

surements) by Moore, Wood, and Yardley, using pure CO 2 up to 250 Torr, but much

closer to the 85 sec-1/Torr that they obtained using an approximate 1:50 mixture of

COZ and He up to 470 Torr. We shall make determinations of the decay times at other

operating conditions and these should be useful in understanding the roles of the com-

ponent gases in the relaxation of the population of the upper laser level in the TEA

laser.

M. S. Elkind, P. W. Hoff
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