16,357 research outputs found
Mean field baryon magnetic moments and sumrules
New developments have spurred interest in magnetic moments (-s) of
baryons. The measurement of some of the decuplet -s and the findings of
new sumrules from various methods are partly responsible for this renewed
interest. Our model, inspired by large colour approximation, is a relativistic
self consistent mean field description with a modified Richardson potential and
is used to describe the -s and masses of all baryons with up (u), down (d)
and strange (s) quarks. We have also checked the validity of the Franklin
sumrule (referred to as CGSR in the literature) and sumrules of Luty,
March-Russell and White. We found that our result for sumrules matches better
with experiment than the non-relativistic quark model prediction. We have also
seen that quark magnetic moments depend on the baryon in which they belong
while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl
The future for fish in the food and livelihoods of the poor in Asia
This article is based on the study, Strategies and Options for Increasing and Sustaining Benefits from Fisheries and Aquaculture Production to Benefit Poor Households in Asia carried out under ADB-RETA 5945, and implemented by the WorldFish Center in partnership with nine participating Asian countries
Community-based fish culture in seasonal floodplains
During the rainy season in extensive river floodplains and deltaic lowlands, floods render the land unavailable for crop production for several months each year. These waters are considerably underutilized in terms of managed aquatic productivity. This raises the opportunity to enclose parts of these floodwater areas to produce a crop of specifically stocked aquatic organisms aside from the naturally occurring ‘wild’ species that are traditionally fished and are not affected by the culture activity, resulting in more high-quality, nutrient-dense food production and enhanced farm income for all stakeholders, notably the poor. The WorldFish Center and its national partners recently tested the concurrent rice-fish culture in the shallower flooded areas and the alternating rice-fish culture in the deep-flooded areas of Bangladesh and Viet Nam through a community-based management system. Results indicate that community-based fish culture in rice fields can increase fish production by about 600 kg/ha/year in shallow flooded areas and up to 1.5 t/ha/year in deep-flooded areas, without a reduction in the rice yield or wild fish catch
A Note on Complex-Hyperbolic Kleinian Groups
Let Γ be a discrete group of isometries acting on the complex hyperbolic n-space HCn. In this note, we prove that if Γ is convex-cocompact, torsion-free, and the critical exponent δ(Γ) is strictly lesser than 2, then the complex manifold HCn/Γ is Stein. We also discuss several related conjectures
Compressive Sensing with Low-Power Transfer and Accurate Reconstruction of EEG Signals
Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful physiological parameters to diagnose any neurological disorder. Generally, EEG signal needs to record for longer periods which results in a large volume of data leading to huge storage and communication bandwidth requirements in WBAN. Moreover, WBAN sensor nodes are battery operated which consumes lots of energy. The aim of this research is, therefore, low power transmission of EEG signal over WBAN and its accurate reconstruction at the receiver to enable continuous online-monitoring of EEG and real time feedback to the patients from the medical experts. To reduce data rate and consequently reduce power consumption, compressive sensing (CS) may be employed prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of the signal with CS depends on a suitable dictionary in which the signal is sparse. As the EEG signal is not sparse in either time or frequency domain, identifying an appropriate dictionary is paramount. There are a plethora of choices for the dictionary to be used. Wavelet bases are of interest due to the availability of associated systems and methods. However, the attributes of wavelet bases that can lead to good quality of reconstruction are not well understood. For the first time in this study, it is demonstrated that in selecting wavelet dictionaries, the incoherence with the sensing matrix and the number of vanishing moments of the dictionary should be considered at the same time. In this research, a framework is proposed for the selection of an appropriate wavelet dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly incoherent with SBM and relatively high number of vanishing moments) is identified as the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The power requirements for the proposed framework are also quantified using a power model. The outcomes will assist to realize the computational complexity and online implementation requirements of CS for transmitting EEG in WBAN. The proposed approach facilitates the energy savings budget well into the microwatts range, ensuring
a significant savings of battery life and overall system’s power.
The study is intended to create a strong base for the use of EEG in the high-accuracy and low-power based biomedical applications in WBAN
Data-driven remote fault detection and diagnosis of HVAC terminal units using machine learning techniques
The modernising and retrofitting of older buildings has created a drive to install building management systems (BMS) aimed to assist building managers pave the way towards smarter energy use, improve maintenance and increase occupants comfort inside a building. BMS is a computerised control system that controls and monitors a building’s equipment, services such as lighting, ventilation, power systems, fire and security systems, etc. Buildings are becoming more and more complex environments and energy consumption has globally increased to 40% in the past decades. Still, there is no generalised solution or standardisation method available to maintain and handle a building’s energy consumption. Thus this research aims to discover an intelligent solution for the building’s electrical and mechanical units that consume the most power. Indeed, remote control and monitoring of Heating, Ventilation and Air-Conditioning (HVAC) units based on the received information through the thousands of sensors and actuators, is a crucial task in BMS. Thus, it is a foremost task to identify faulty units automatically to optimise running and energy usage. Therefore, a comprehensive analysis on HVAC data and the development of computational intelligent methods for automatic fault detection and diagnosis is been presented here for a period of July 2015 to October 2015 on a real commercial building in London. This study mainly investigated one of the HVAC sub-units namely Fan-coil unit’s terminal unit (TU). It comprises of the three stages: data collection, pre-processing, and machine learning. Further to the aspects of machine learning algorithms for TU behaviour identification by employing unsupervised, supervised, and semi-supervised learning algorithms and their combination was employed to make an automatic intelligent solution for building services. The accuracy of these employed algorithms have been measured in both training and testing phases, results compared with different suitable algorithms, and validated through statistical measures. This research provides an intelligent solution for the real time prediction through the development of an effective automatic fault detection and diagnosis system creating a smarter way to handle the BMS data for energy optimisation
Thrice weekly nocturnal in-centre haemodiafiltration: a 2-year experience
Background: Adequate control of plasma phosphate without phosphate binders is difficult to achieve on a thrice-weekly haemodialysis schedule. The use of quotidian nocturnal dialysis is effective but not practical in the in-centre setting. This quality improvement project was set up as an exercise allowing the evaluation of small-solute clearance by combining convection with extended-hour dialysis in a thrice-weekly hospital setting. Methods: A single-centred, prospective analysis of patients' electronic records was performed from August 2012 to July 2014. The duration of haemodiafiltration was increased from a median of 4.5 to 8 h. Dialysis adequacy, biochemical parameters and medications were reviewed on a monthly basis. A reduction in plasma phosphate was anticipated, so all phosphate binders were stopped. Results: Since inception, 14 patients have participated with over 2,000 sessions of dialysis. The pre-dialysis phosphate level fell from a mean of 1.52 ± 0.4 to 1.06 ± 0.1 mmol/l (p < 0.05). The average binder intake of 3.26 ± 2.6 tablets was eliminated. A normal plasma phosphate range has been maintained with increased dietary phosphate intake and no requirement for intradialytic phosphate supplementation. Conclusion: Phosphate control can be achieved without the need for binders or supplementation on a thrice-weekly in-centre haemodiafiltration program
Properties of soliton surfaces associated with integrable sigma models
We investigate certain properties of -valued
two-dimensional soliton surfaces associated with the integrable
sigma models constructed by the orthogonal rank-one
Hermitian projectors, which are defined on the two-dimensional Riemann sphere
with finite action functional. Several new properties of the projectors mapping
onto one-dimensional subspaces as well as their relations with three mutually
different immersion formulas, namely, the generalized Weierstrass, Sym-Tafel
and Fokas-Gel'fand have been discussed in detail. Explicit connections among
these three surfaces are also established by purely analytical descriptions
and, it is demonstrated that the three immersion formulas actually correspond
to the single surface parametrized by some specific conditions.Comment: 17 page
Ongoing rehabilitation of coastal communities in Aceh province : a new project
This article presents an overview of the project on Rehabilitation of Fisheries and Aquaculture in Tsunami-affected Coastal Communities in Aceh Province. Building on the research results from the recently completed projects detailed in the previous articles, this project shall synthesize information on coastal fishing communities and resources in order to develop site-specific management options to support rehabilitation of fisheries and aquaculture.Disasters, Coastal zone, ISEW, Indonesia, Aceh,
- …