2,125 research outputs found

    Advanced process technologies : plasma, direct-wire, atmospheric pressure, and roll-to-roll ALD

    Get PDF
    As applications of atomic layer deposition (ALD) in emerging areas such as nanoelectronics, photovoltaics, and flexible electronics expand beyond single-wafer semiconductor processing, there is a growing need for novel approaches to integrate new process designs, substrate materials, and substrate delivery methods. An overview is given of new means to extend the capabilities of ALD and to improve the speed and simplicity of ALD coatings using new reactor designs. These include energy-enhanced and spatial ALD schemes involving plasma, direct-write, atmospheric pressure, and roll-to-roll processing. The long-term goal of this work is to integrate viable high-throughput capabilities with ALD processes

    The Role of Protein Arginine Methylation as Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function

    Get PDF
    The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, but can also directly control an actin nucleation-promoting factor shaping neuronal cells—a key process for the formation of neuronal networks in vertebrate brains

    Immunocytochemistry by Electron Spectroscopic Imaging Using Well Defined Boronated Monovalent Antibody Fragments

    Get PDF
    Contributing to the rapidly developing field of immunoelectron microscopy a new kind of markers has been created. The element boron, incorporated as very stable carborane clusters into different kinds of peptides, served as a marker detectable by electron spectroscopic imaging (ESI) - an electron microscopic technique with high-resolution potential. Covalently linked immunoreagents conspicuous by the small size of both antigen recognizing part and marker moiety are accessible by using peptide concepts for label construction and their conjugation with Fab\u27 fragments. Due to a specific labeling of the free thiol groups of the Fab\u27 fragments, the antigen binding capacity was not affected by the attachment of the markers and the resulting immunoprobes exhibited an elongated shape with the antigen combining site and the label located at opposite ends. The labeling densities observed with these reagents were found to be significantly higher than those obtained by using conventional colloidal gold methods. Combined with digital image processing and analysis systems, boron-based ESI proved to be a powerful approach in ultrastructural immunocytochemistry employing pre-and post-embedding methods

    A bacteriophage-based platform for early diagnosis of Alzheimers disease

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017[Excerpt] Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting a large proportion of the human population worldwide. One hallmark of AD is the increased deposition of plaques, which consist of amyloid-beta (AB) peptide, a key molecule to cause AD onset and progression. However, it is not AB immobilized in plaques, but in the still-soluble oligomeric/fibrillar form that impairs synaptic function and memory encoding. It is therefore important to develop tools that selectively target AB in oligomeric/fibrillar form, to diagnose and neutralize these detrimental AB-clusters during the early stages of the disease. Homing peptides that selectively recognize AB-oligomers and fibrils have been described: AB30-39, reactive for AB fibrils and AB33-42, reactive to fibrils and oligomers [1]. However, these peptides are unable to cross the blood-brain barrier (BBB) by themselves. To overcome this limitation, viruses became a very interesting tool given their versatility to be modified through genetic or chemical manipulation. Bacteriophages (phages), are viruses that only infect bacteria (a major advantage in terms of safety when therapeutic use in humans is envisaged). M13KE is one of the most widely used phage which has been reported as capable to cross the BBB [2]. [...]info:eu-repo/semantics/publishedVersio

    Table of Contents

    Get PDF
    Table of contents for Volume 10, Issue 3 of the Linfield Magazin
    • …
    corecore