99,610 research outputs found

    Therapeutic decision making in autoimmune and inflammatory disorders of the central nervous system in children.

    Get PDF
    ABSTRACT Autoimmune and inflammatory disorders of the central nervous system can result in significant morbidity and mortality. Through the recognition of syndromes using diagnostic biomarkers, the clinician is now able to use immune suppressive therapies to improve outcomes. However, the therapeutic decision-making process is complex. The clinician has to balance the risk of disease, with the risk of treatment side effects. To achieve this balance, it is important to understand the natural history of disease, the risk of residual disability, the risk of relapse, and risk of a fatal outcome. It is also important to have some understanding of the pathological processes, as some of the entities have more reversible processes, whereas others have destructive processes. This review will assess the dynamic nature of this decision-making process, and compare some of the more severe diseases such as neuromyelitis optica, anti-N-methyl-D-aspartate receptor encephalitis and opsoclonus myoclonus ataxia syndrome, with disorders with more favourable outcomes such as Sydenham chorea and post-infectious cerebellar ataxia

    Spatio-temporal variation of conversational utterances on Twitter

    Get PDF
    Conversations reflect the existing norms of a language. Previously, we found that utterance lengths in English fictional conversations in books and movies have shortened over a period of 200 years. In this work, we show that this shortening occurs even for a brief period of 3 years (September 2009-December 2012) using 229 million utterances from Twitter. Furthermore, the subset of geographically-tagged tweets from the United States show an inverse proportion between utterance lengths and the state-level percentage of the Black population. We argue that shortening of utterances can be explained by the increasing usage of jargon including coined words.Comment: 13 pages, 7 figures, published in PLoS On

    A variety of lepton number violating processes related to Majorana neutrino masses

    Get PDF
    A Majorana type of the neutrino mass matrix induces a class of lepton number violating processes. Cross sections of these reactions are given in terms of the neutrino mass matrix element, and a semi-realistic event rate is estimated. These processes provide mass and mixing parameters not directly accessible by the neutrino oscillation experiments. If these processes are discovered with a larger rate than given here, it would imply a new physics of the lepton number violation not directly related to the Majorana neutrino mass, such as R-parity violating operators in SUSY models.Comment: 15 pages, 1 figur

    Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1.

    Get PDF
    Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite different. Retinal recoverin controls Ca(2) (+)-dependent inactivation of light-excited rhodopsin during phototransduction, guanylyl cyclase activating proteins 1 and 2 (GCAP1 and GCAP2) promote Ca(2) (+)-dependent activation of retinal guanylyl cyclases, and neuronal frequenin (NCS-1) modulates synaptic activity and neuronal secretion. Here we review the molecular structures of myristoylated forms of NCS-1, recoverin, and GCAP1 that all look very different, suggesting that the attached myristoyl group helps to refold these highly homologous proteins into different three-dimensional folds. Ca(2) (+)-binding to both recoverin and NCS-1 cause large protein conformational changes that ejects the covalently attached myristoyl group into the solvent exterior and promotes membrane targeting (Ca(2) (+)-myristoyl switch). The GCAP proteins undergo much smaller Ca(2) (+)-induced conformational changes and do not possess a Ca(2) (+)-myristoyl switch. Recent structures of GCAP1 in both its activator and Ca(2) (+)-bound inhibitory states will be discussed to understand structural determinants that control their Ca(2) (+)-dependent activation of retinal guanylyl cyclases

    Intensity correlations and entanglement by frequency doubling in a dual ported resonator

    Full text link
    We show that non-classical intensity correlations and quadrature entanglement can be generated by frequency doubling in a resonator with two output ports. We predict twin-beam intensity correlations 6 dB below the coherent state limit, and that the product of the inference variances of the quadrature fluctuations gives an Einstein-Podolsky-Rosen (EPR) correlation coefficient of V_EPR = 0.6 < 1. Comparison with an entanglement source based on combining two frequency doublers with a beam splitter shows that the dual ported resonator provides stronger entanglement at lower levels of individual beam squeezing. Calculations are performed using a self-consistent propagation method that does not invoke a mean field approximation. Results are given for physically realistic parameters that account for the Gaussian shape of the intracavity beams, as well as intracavity losses.Comment: 12 pages, 9 figures, normalization corrected, fig 3 and fig 7 update

    Coulomb-blockade effect in nonlinear mesoscopic capacitors

    Get PDF
    We consider an interacting quantum dot working as a coherent source of single electrons. The dot is tunnel coupled to a reservoir and capacitively coupled to a gate terminal with an applied ac potential. At low frequencies, this is the quantum analog of the RC circuit with a purely dynamical response. We investigate the quantized dynamics as a consequence of ac pulses with large amplitude. Within a Keldysh-Green function formalism we derive the time-dependent current in the Coulomb blockade regime. Our theory thus extends previous models that considered either noninteracting electrons in nonlinear response or interacting electrons in the linear regime. We prove that the electron emission and absorption resonances undergo a splitting when the charging energy is larger than the tunnel broadening. For very large charging energies, the additional peaks collapse and the original resonances are recovered, though with a reduced amplitude. Quantization of the charge emitted by the capacitor is reduced due to Coulomb repulsion and additional plateaus arise. Additionally, we discuss the differential capacitance and resistance as a function of time. We find that to leading order in driving frequency the current can be expressed as a weighted sum of noninteracting currents shifted by the charging energy.Comment: 13 pages, 9 figures. Minor changes. Published versio

    Self-organizing, two-temperature Ising model describing human segregation

    Full text link
    A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by M\"uller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.Comment: 5 pages, 4 page
    corecore