1,743 research outputs found

    Vertical motions in the equatorial middle atmosphere

    Get PDF
    A single station vertical velocity equation which considers ageostrophic and diabatic effects derived from the first law of thermodynamics and a generalized thermal wind relation is presented. An analysis and verification procedure which accounts for measurement and calculation errors as well as time and space continuity arguments and theoretical predictions are described. Vertical velocities are calculated at every kilometer between 25 and 60 km and for approximately every three hours for the above diurnal period at Kourou (French Guiana), Fort Sherman (Panama Canal Zone), Ascension Island, Antigua (British West Indies) and Natal (Brazil). The results, plotted as time series cross sections, suggest vertical motions ranging in magnitude from 1 or 2 cm/sec at 30 km to as much as 15 cm/sec at 60 km. Many of the general features of the results agree well with atmospheric tidal predictions but many particular features suggest that both smaller time scale gravity waves (periods less than 6 hours) and synoptic type waves (periods greater than 1 day) may be interacting significantly with the tidal fields. The results suggest that vertical motions can be calculated for the equatorial middle atmosphere and must be considered a significant part of the motion for time scales from 8 to 24 hours

    Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    Get PDF
    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle

    Phosphorylation of EGFR, ERK 1/2 and downstream transcription factors after P2Y2 receptor activation in a human submandibular gland cell line

    Get PDF
    Abstract only availableP2 nucleotide receptors mediate a variety of biological responses and are activated by the extracellular nucleotides adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP), uridine diphosphate (UDP). The P2Y2 nucleotide receptor is a seven transmembrane spanning domain receptor activated by the nucleotides ATP and UTP, and is up-regulated in a variety of tissues in response to injury or stress. For example, the P2Y2 receptors are not normally expressed in salivary glands, but upon disruption of tissue homeostasis, the P2Y2 receptors are up-regulated. Sjogren's disease is an autoimmune disorder that affects salivary and lacrimal glands resulting in a decreased ability to produce saliva and tears. Previous work by our lab has shown that the P2Y2 receptor is up-regulated in submandibular glands of a Sjogren's syndrome mouse model, suggesting that it may be up-regulated in human Sjogren's syndrome. The goal of this project is to analyze the function of P2Y2 receptors in salivary gland tissues. HSG cells, which endogenously express P2Y2 receptors and are derived from a human submandibular gland tumor, were utilized as a cell model to analyze downstream signaling pathways in response to UTP. Our results show that UTP, the P2Y2 receptor selective agonist, causes phosphorylation of the epidermal growth factor receptor (EGFR), extracellular regulated kinases (ERK 1/2) and the downstream transcription factors p90RSK, and ELK, suggesting that P2Y2 receptors may play a role in gene transcription in salivary gland tissues.NSF-REU Biology & Biochemistr

    Health-Related Conditions and Depression in Elderly Mexican American and Non-Hispanic White Residents of a United States-Mexico Border County: Moderating Effects of Educational Attainment

    Get PDF
    We investigated the prevalence of “high” levels of depressive symptomatology and 13 health-related medical conditions in elderly Mexican American (MA) and non-Hispanic white (NHW) residents of El Paso County, Texas. We analyzed the extent to which depressive symptoms in this population are associated with these conditions. Elderly MA residents possessed a higher prevalence of current depression, a relatively unique health-related condition profile, and were more likely to experience a set of conditions that impede participation in daily life—conditions that we found to be strongly associated with high depressive symptomatology in the elderly. After adjusting for educational attainment, using multiple regression analyses, depression was not associated with ethnicity and only six of the health related conditions showed significant differences between MA and NHW subjects. We believe these results provide an important insight into the mechanism of health-related conditions and depressive symptomatology in a large sample of elderly MAs; and how conditions typically attributed to MA ethnicity may in actuality be an artifact of socioeconomic status variables such as educational-attainment

    A Modeling Study on the Sensitivities of Atmospheric Charge Separation According to the Relative Diffusional Growth Rate Theory to Nonspherical Hydrometeors and Cloud Microphysics

    Get PDF
    Collisional charge transfer between graupel and ice crystals in the presence of cloud droplets is considered the dominant mechanism for charge separation in thunderclouds. According to the relative diffusional growth rate (RDGR) theory, the hydrometeor with the faster diffusional radius growth is charged positively in such collisions. We explore sensitivities of the RDGR theory to nonspherical hydrometeors and six parameters (pressure, temperature, liquid water content, sizes of ice crystals, graupel, and cloud droplets). Idealized simulations of a thundercloud with two‐moment cloud microphysics provide a realistic sampling of the parameter space. Nonsphericity and anisotropic diffusional growth strongly control the extent of positive graupel charging. We suggest a tuning parameter to account for anisotropic effects not represented in bulk microphysics schemes. In a susceptibility analysis that uses automated differentiation, we identify ice crystal size as most important RDGR parameter, followed by graupel size. Simulated average ice crystal size varies with temperature due to ice multiplication and heterogeneous freezing of droplets. Cloud microphysics and ice crystal size thus indirectly determine the structure of charge reversal lines in the traditional temperature‐water‐content representation. Accounting for the variability of ice crystal size and potentially habit with temperature may help to explain laboratory results and seems crucial for RDGR parameterizations in numerical models. We find that the contribution of local water vapor from evaporating rime droplets to diffusional graupel growth is only important for high effective water content. In this regime, droplet size and pressure are the dominant RDGR parameters. Otherwise, the effect of local graupel growth is masked by small ice crystal sizes that result from ice multiplication

    Increased Risk of Non-Q Wave Myocardial Infarction After Directional Atherectomy Is Platelet Dependent: Evidence From the EPIC Trial

    Get PDF
    AbstractObjectives. We sought to determine the effects of platelet glycoprotein IIb/IIIa receptor blockade on adverse outcomes, especially non-Q wave myocardial infarction, in patients undergoing directional atherectomy in the Evaluation of c7E3 for the Prevention of Ischemic Complications (EPIC) trial.Background. Randomized trials comparing directional atherectomy with percutaneous transluminal coronary angioplasty (PTCA) have demonstrated modest benefits favoring atherectomy but at a cost of increased acute ischemic complications, notably non-Q wave myocardial infarction. The mechanism for this excess risk is unknown.Methods. Of 2,038 high risk patients undergoing coronary intervention in the EPIC trial, directional atherectomy was performed in 197 (10%). Patients randomly received the chimeric glycoprotein IIb/IIIa antibody 7E3 (c7E3), as a bolus or a bolus and 12-h infusion or placebo. Study end points included death, myocardial infarction, repeat intervention or bypass surgery.Results. Patients undergoing directional atherectomy had a lower baseline risk for acute complications but had a higher incidence of any myocardial infarction (10.7% vs. 6.3%, p = 0.021) and non-Q wave myocardial infarction (9.6% vs. 4.9%, p = 0.006). Bolus and infusion of c7E3 reduced non-Q wave myocardial infarctions by 71% after atherectomy (15.4% for placebo vs. 4.5% for bolus and infusion, p = 0.046). Non-Q wave myocardial infarction rates after PTCA were not affected by c7E3, although Q wave myocardial infarctions were reduced from 2.6% to 0.8% (p = 0.017).Conclusions. The EPIC trial confirmed the increased risk of non-Q wave myocardial infarction with directional atherectomy use compared with PTCA. A bolus and 12-h infusion of the glycoprotein IIb/IIIa receptor inhibitor c7E3 abolished this excess risk. Directional atherectomy-related non-Q wave myocardial infarction appears to be platelet aggregation dependent

    The utility of MRI in predicting radiographic erosions in the metatarsophalangeal joints of the rheumatoid foot: a prospective longitudinal cohort study

    Get PDF
    INTRODUCTION: Magnetic resonance imaging (MRI) may reveal rheumatoid arthritis (RA) changes in the feet when hands are normal. The purpose of this study was to determine the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of a metatarsophalangeal (MTP) erosion on MRI to predict a subsequent radiographic erosion in the same joint. Similar analyses were performed for bone marrow edema, predicting a subsequent MRI erosion. Descriptive results of other lesions are reported. METHODS: Fifty patients with RA of less than 5 years' duration who were rheumatoid factor-positive and/or anti-cyclic citrullinated peptide-positive were recruited. Patients on anti-tumor necrosis factor (TNF) therapy were excluded. Anti-TNF therapy could begin after enrollment. MRI and radiographs of the 3rd, 4th, and 5th MTP joints bilaterally were taken at baseline and at 6, 12, and 24 months. Clinical data were collected. RESULTS: Fifty patients were recruited; 46 patients had suitable data. Results for MRI erosions predicting subsequent radiographic erosions for 6, 12, and 24 months, respectively, were as follows: sensitivity 0.75, 0.60, 0.75; specificity 0.93, 0.94, 0.94; PPV 0.086, 0.10, 0.17; NPV 0.998, 0.995, 0.995. Results for MRI bone marrow edema predicting MRI erosions at 6 and 12 months, respectively, revealed sensitivity 0.50, 0.67; specificity 0.97, 0.97; PPV 0.25, 0.50; NPV 0.99, 0.99. Synovitis was the most common finding and, when present in isolation, resolved on 67.3% of subsequent studies. MRI erosions persisted on subsequent studies with one exception. Forty-six percent of the cohort was on anti-TNF therapy after study inception. CONCLUSIONS: The PPV of MRI erosions to predict subsequent radiographic erosions was low. Similarly, the PPV of bone marrow edema to predict a later MRI erosion was low. Alternatively, the NPV of the absence of an MRI erosion or bone marrow edema predicts that a later radiographic erosion or MRI erosion will likely not develop. Anti-TNF therapies may have resulted in the lower-than-anticipated PPVs. MRI descriptions of bone edema may represent a more critical time to treat in order to avoid damage, whereas an MRI erosion represents more permanent damage. This study suggests that imaging modalities more sensitive than radiographs are necessary to monitor disease in the biologic era

    Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry

    Full text link
    Context. Icy dust grains play an important role in the formation of complex inter- and circumstellar molecules. Observational studies show that polycyclic aromatic hydrocarbons (PAHs) are abundantly present in the ISM in the gas phase. It is likely that these non-volatile species freeze out onto dust grains as well and participate in the astrochemical solid-state network, but experimental PAH ice studies are largely lacking. Methods. Near UV/VIS spectroscopy is used to track the in situ VUV driven photochemistry of pyrene containing ices at temperatures ranging from 10 to 125 K. Results. The main photoproducts of VUV photolyzed pyrene ices are spectroscopically identified and their band positions are listed for two host ices, \water and CO. Pyrene ionisation is found to be most efficient in \water ices at low temperatures. The reaction products, triplet pyrene and the 1-hydro-1-pyrenyl radical are most efficiently formed in higher temperature water ices and in low temperature CO ice. Formation routes and band strength information of the identified species are discussed. Additionally, the oscillator strengths of Py, Py^+ and PyH are derived and a quantitative kinetic analysis is performed by fitting a chemical reaction network to the experimental data. Conclusions. Pyrene is efficiently ionised in water ice at temperatures below 50 K. Hydrogenation reactions dominate the chemistry in low temperature CO ice with trace amounts of water. The results are put in an astrophysical context by determining the importance of PAH ionisation in a molecular cloud. The photoprocessing of a sample PAH in ice described in this manuscript indicates that PAH photoprocessing in the solid state should also be taken into account in astrochemical models.Comment: 11 pages, 8 figures, accepted for publication in A&

    Recognition of Face Identity and Emotion in Expressive Specific Language Impairment

    Get PDF
    Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
    corecore