529 research outputs found

    An additive manufacturing filter for topology optimization of print-ready designs

    Get PDF
    Additive manufacturing (AM) offers exciting opportunities to manufacture parts of unprecedented complexity. Topology optimization is essential to fully exploit this capability. However, AM processes have specific limitations as well. When these are not considered during design optimization, modifications are generally needed in post-processing, which add costs and reduce the optimized performance. This paper presents a filter that incorporates the main characteristics of a generic AM process, and that can easily be included in conventional density-based topology optimization procedures. Use of this filter ensures that optimized designs comply with typical geometrical AM restrictions. Its performance is illustrated on compliance minimization problems, and a 2D Matlab implementation is provided.</p

    Topological synthesis of fluidic pressure-actuated robust compliant mechanisms

    Full text link
    This paper presents a robust density-based topology optimization approach for synthesizing pressure-actuated compliant mechanisms. To ensure functionality under manufacturing inaccuracies, the robust or three-field formulation is employed, involving dilated, intermediate and eroded realizations of the design. Darcy's law in conjunction with a conceptualized drainage term is used to model the pressure load as a function of the design vector. The consistent nodal loads are evaluated from the obtained pressure field using the standard finite element method. The objective and load sensitivities are obtained using the adjoint-variable approach. A multi-criteria objective involving both the stiffness and flexibility of the mechanism is employed in the robust formulation, and min-max optimization problems are solved to obtain pressure-actuated inverter, gripper, and contractor compliant mechanisms with different minimum feature sizes. Limitations of the linear elasticity assumptions while designing mechanisms are identified with high pressure loads. Challenges involved in designing finite deformable pressure-actuated compliant mechanisms are presented.Comment: 24 Figure

    Automated design of pneumatic soft grippers through design-dependent multi-material topology optimization

    Full text link
    In recent years, soft robotic grasping has rapidly spread through the academic robotics community and pushed into industrial applications. At the same time, multimaterial 3D printing has become widely available, enabling monolithic manufacture of devices containing rigid and elastic section. We propose a novel design technique which leverages both of these technologies and is able to automatically design bespoke soft robotic grippers for fruit-picking and similar applications. We demonstrate the novel topology optimisation formulation which generates multi-material soft gippers and is able to solve both the internal and external pressure boundaries, and investigate methods to produce air-tight designs. Compared to existing methods, it vastly expands the searchable design space whilst increasing simulation accuracy
    • …
    corecore