7,019 research outputs found

    A Definitive Optical Detection of a Supercluster at z = 0.91

    Get PDF
    We present the results from a multi-band optical imaging program which has definitively confirmed the existence of a supercluster at z = 0.91. Two massive clusters of galaxies, CL1604+4304 at z = 0.897 and CL1604+4321 at z = 0.924, were originally observed in the high-redshift cluster survey of Oke, Postman & Lubin (1998). They are separated by 4300 km/s in radial velocity and 17 arcminutes on the plane of the sky. Their physical and redshift proximity suggested a promising supercluster candidate. Deep BRi imaging of the region between the two clusters indicates a large population of red galaxies. This population forms a tight, red sequence in the color--magnitude diagram at (R-i) = 1.4. The characteristic color is identical to that of the spectroscopically-confirmed early-type galaxies in the two member clusters. The red galaxies are spread throughout the 5 Mpc region between CL1604+4304 and CL1604+4321. Their spatial distribution delineates the entire large scale structure with high concentrations at the cluster centers. In addition, we detect a significant overdensity of red galaxies directly between CL1604+4304 and CL1604+4321 which is the signature of a third, rich cluster associated with this system. The strong sequence of red galaxies and their spatial distribution clearly indicate that we have discovered a supercluster at z = 0.91.Comment: Accepted for publication in Astrophysical Journal Letters. 13 pages, including 5 figure

    Good Bye Traditional Budgeting, Hello Rolling Forecast: Has The Time Come?

    Get PDF
    This paper argues for a new approach to accounting textbook budgeting material. The business environment is not stable. Change is continuous, for large and small business alike. A business must act and react to generate shareholder value. The rolling forecast provides the necessary navigational insight. The traditional annual static budget does not. Managing a business, looking inwards and backwards and making decisions to hit the annual budget target no longer serves management in generating shareholder value. In most situations this approach to company management only leads to compromised performance. Leadership may not reach long-term shareholder wealth potential in using the traditional annual budget as a command and control device. Our research shows companies are moving to a rolling forecast as a management navigational tool. Leadership uses the forecast to navigate continuous change in creating shareholder value. This paper demonstrates how to build leadership concepts that go along with the rolling forecast, as well as the rolling forecast process itself into the classroom and accounting textbook material. Accounting and graduate business students need this type of education to help lead and increase a business’ chances of success

    Blowup of Jang's equation at outermost marginally trapped surfaces

    Get PDF
    The aim of this paper is to collect some facts about the blowup of Jang's equation. First, we discuss how to construct solutions that blow up at an outermost MOTS. Second, we exclude the possibility that there are extra blowup surfaces in data sets with non-positive mean curvature. Then we investigate the rate of convergence of the blowup to a cylinder near a strictly stable MOTS and show exponential convergence near a strictly stable MOTS.Comment: 15 pages. This revision corrects some typo

    Nonexistence of Generalized Apparent Horizons in Minkowski Space

    Full text link
    We establish a Positive Mass Theorem for initial data sets of the Einstein equations having generalized trapped surface boundary. In particular we answer a question posed by R. Wald concerning the existence of generalized apparent horizons in Minkowski space

    The relationship between Hippocampal asymmetry and working memory processing in combat-related PTSD: a monozygotic twin study

    Get PDF
    BACKGROUND: PTSD is associated with reduction in hippocampal volume and abnormalities in hippocampal function. Hippocampal asymmetry has received less attention, but potentially could indicate lateralised differences in vulnerability to trauma. The P300 event-related potential component reflects the immediate processing of significant environmental stimuli and has generators in several brain regions including the hippocampus. P300 amplitude is generally reduced in people with PTSD. METHODS: Our study examined hippocampal volume asymmetry and the relationship between hippocampal asymmetry and P300 amplitude in male monozygotic twins discordant for Vietnam combat exposure. Lateralised hippocampal volume and P300 data were obtained from 70 male participants, of whom 12 had PTSD. We were able to compare (1) combat veterans with current PTSD; (2) their non-combat-exposed co-twins; (3) combat veterans without current PTSD and (4) their non-combat-exposed co-twins. RESULTS: There were no significant differences between groups in hippocampal asymmetry. There were no group differences in performance of an auditory oddball target detection task or in P300 amplitude. There was a significant positive correlation between P300 amplitude and the magnitude of hippocampal asymmetry in participants with PTSD. CONCLUSIONS: These findings suggest that greater hippocampal asymmetry in PTSD is associated with a need to allocate more attentional resources when processing significant environmental stimuli.Timothy Hall, Cherrie Galletly, C.R. Clark, Melinda Veltmeyer, Linda J. Metzger, Mark W. Gilbertson, Scott P. Orr, Roger K. Pitman and Alexander McFarlan

    A Search for Distant Galactic Cepheids Toward l=60

    Get PDF
    We present results of a survey of a 6-square-degree region near l=60, b=0 to search for distant Milky Way Cepheids. Few MW Cepheids are known at distances >~ R_0, limiting large-scale MW disk models derived from Cepheid kinematics; this work was designed to find a sample of distant Cepheids for use in such models. The survey was conducted in the V and I bands over 8 epochs, to a limiting I~=18, with a total of ~ 5 million photometric observations of ~ 1 million stars. We present a catalog of 578 high-amplitude variables discovered in this field. Cepheid candidates were selected from this catalog on the basis of variability and color change, and observed again the following season. We confirm 10 of these candidates as Cepheids with periods from 4 to 8 days, most at distances > 3 kpc. Many of the Cepheids are heavily reddened by intervening dust, some with implied extinction A_V > 10 mag. With a future addition of infrared photometry and radial velocities, these stars alone can provide a constraint on R_0 to 8%, and in conjunction with other known Cepheids should provide good estimates of the global disk potential ellipticity.Comment: 18 pages, 4 tables, 13 figures (LaTeX / AASTeX

    The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric Calibration, and the Hubble Constant

    Full text link
    We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars, we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V-I)o color of a galaxy according to M_Ibar = (-1.74 +/- 0.07) + (4.5 +/- 0.25) [ (V-I)o - 1.15 ] for 1.0 < (V-I) < 1.3. This agrees well with theoretical estimates from stellar population models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn-sigma, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn-sigma and SNIa is in terms of a Hubble expansion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H_0 = 81 +/- 6 km/s/Mpc. As part of this analysis, we present SBF distances to 12 nearby groups of galaxies where Cepheids, SNII, and SNIa have been observed.Comment: 29 pages plus 8 figures; LaTeX (AASTeX) uses aaspp4.sty (included); To appear in The Astrophysical Journal, 1997 February 1 issue; Compressed PostScript available from ftp://mars.tuc.noao.edu/sbf

    Shock volume: Patient-specific cumulative hypoperfusion predicts organ dysfunction in a prospective cohort of multiply injured patients

    Get PDF
    BACKGROUND: Multiply injured patients are at risk of developing hemorrhagic shock and organ dysfunction. We determined how cumulative hypoperfusion predicted organ dysfunction by integrating serial Shock Index measurements. METHODS: In this study, we calculated shock volume (SHVL) which is a patient-specific index that quantifies cumulative hypoperfusion by integrating abnormally elevated Shock Index (heart rate/systolic blood pressure ≥ 0.9) values acutely after injury. Shock volume was calculated at three hours (3 hr), six hours (6 hr), and twenty-four hours (24 hr) after injury. Organ dysfunction was quantified using Marshall Organ Dysfunction Scores averaged from days 2 through 5 after injury (aMODSD2–D5). Logistic regression was used to determine correspondence of 3hrSHVL, 6hrSHVL, and 24hrSHVL to organ dysfunction. We compared correspondence of SHVL to organ dysfunction with traditional indices of shock including the initial base deficit (BD) and the lowest pH measurement made in the first 24 hr after injury (minimum pH). RESULTS: SHVL at all three time intervals demonstrated higher correspondence to organ dysfunction (R2 = 0.48 to 0.52) compared to initial BD (R2 = 0.32) and minimum pH (R2 = 0.32). Additionally, we compared predictive capabilities of SHVL, initial BD and minimum pH to identify patients at risk of developing high-magnitude organ dysfunction by constructing receiver operator characteristic curves. SHVL at six hours and 24 hours had higher area under the curve compared to initial BD and minimum pH. CONCLUSION: SHVL is a non-invasive metric that can predict anticipated organ dysfunction and identify patients at risk for high-magnitude organ dysfunction after injury. LEVEL OF EVIDENCE: Prognostic study, level III
    corecore