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Abstract

BACKGROUND: Multiply injured patients are at risk of developing hemorrhagic shock and 

organ dysfunction. We determined how cumulative hypoperfusion predicted organ dysfunction by 

integrating serial Shock Index measurements.

METHODS: In this study, we calculated shock volume (SHVL) which is a patient-specific index 

that quantifies cumulative hypoperfusion by integrating abnormally elevated Shock Index (heart 

rate/systolic blood pressure ≥ 0.9) values acutely after injury. Shock volume was calculated at 

three hours (3 hr), six hours (6 hr), and twenty-four hours (24 hr) after injury. Organ dysfunction 

was quantified using Marshall Organ Dysfunction Scores averaged from days 2 through 5 after 

injury (aMODSD2–D5). Logistic regression was used to determine correspondence of 3hrSHVL, 

6hrSHVL, and 24hrSHVL to organ dysfunction. We compared correspondence of SHVL to organ 

dysfunction with traditional indices of shock including the initial base deficit (BD) and the lowest 

pH measurement made in the first 24 hr after injury (minimum pH).

RESULTS: SHVL at all three time intervals demonstrated higher correspondence to organ 

dysfunction (R2 = 0.48 to 0.52) compared to initial BD (R2 = 0.32) and minimum pH (R2 = 0.32). 

Additionally, we compared predictive capabilities of SHVL, initial BD and minimum pH to 

identify patients at risk of developing high-magnitude organ dysfunction by constructing receiver 
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operator characteristic curves. SHVL at six hours and 24 hours had higher area under the curve 

compared to initial BD and minimum pH.

CONCLUSION: SHVL is a non-invasive metric that can predict anticipated organ dysfunction 

and identify patients at risk for high-magnitude organ dysfunction after injury.

LEVEL OF EVIDENCE: Prognostic study, level III.
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Organ dysfunction and adverse outcomes, such as nosocomial infection (NI), affect the 

clinical course of multiple injuries patients (MIPs).1–4 Complications have a significant 

effect on both short-term and long-term outcomes.5,6 Early risk stratification of injury-

related complications would offer treating physicians an expanded window to initiate 

interventional or supportive treatments to improve outcomes.7,8

Hemorrhagic shock (HS) plays a foundational pathophysiologic role in organ dysfunction 

after injury.9–11 Hemorrhagic shock causes immediate reductions in oxygen and nutrient 

delivery accompanied by reduction in waste removal from tissues.12,13 Prolonged HS 

eventually causes tissues to adapt anaerobic energy production which can lead to organ 

dysfunction. The physiologic consequences of HS are directly proportional to the magnitude 

and duration of hypoperfusion.12,13 Therefore, indices that account for both the magnitude 

and duration of HS have potential to stratify risks of complications in MIPs. Traditionally, 

researchers have quantified the magnitude of HS by measuring systemic markers that reflect 

the magnitude of anaerobic metabolism including pH and lactate and by calculating base 

deficit (BD). More recently, researchers have directly measured tissue-level oxygen 

saturation levels as a surrogate of shock.14,15 Collectively, the authors have shown that 

anaerobic metabolism and tissue-level oxygen saturation indices predict outcomes and organ 

dysfunction phenotypes.12,13,16–19 While serum levels of lactate are measured and BD is 

calculated at a single point in time, they reflect temporal accumulation of anaerobic 

metabolic products and accordingly provide insight on the duration and severity of HS. 

However, it is likely that values sampled at a single point in time do not fully account for the 

temporal component of HS and therefore, it remains unknown how well circulating 

concentrations of lactate, BD calculations, and systemic pH levels fully quantify cumulative 

hypoperfusion.

We recently introduced a metric that measures cumulative hypoperfusion, shock volume 

(SHVL).20 Shock volume is calculated by integrating serial Shock Index (SI) (heart rate/

systolic blood pressure) values during any prescribed acute injury/resuscitation time frame. 

Specifically, the duration and magnitude that SI values are above accepted thresholds of 

hypoperfusion (0.9) are integrated into an index that quantifies cumulative hypoperfusion.
16,18,21,22 The goal of this study was to investigate the clinical utility of SHVL in predicting 

acute outcomes in a prospective cohort of MIPs. Our hypothesis was that SHVL would more 

closely correspond to the magnitude of organ dysfunction in MIPs compared with the 

traditional indices BD and pH. We do not routinely measure lactate at our institution, and 
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therefore lactate was not included in this study for comparison. To test our hypothesis, we 

calculated SHVL and measured BD and pH in a prospective cohort of MIPs and determined 

how these values corresponded to the magnitude of organ dysfunction and how well these 

values identified patients at risk of high-magnitude organ dysfunction.

PATIENTS AND METHODS

Patient Population

This study was approved by our institutional review board (IRB). We enrolled a consecutive 

prospective cohort of 100 blunt MIPs. Patients were aged 18 years to 55 years and met the 

following criteria: (1) presented as a full trauma activation defined by the general surgical 

trauma team with the attending surgeon present at the time of patient intake performing the 

initial resuscitation; (2) were admitted to surgical intensive care unit (ICU) from the 

emergency department or proceeded directly to surgery from the emergency department and 

were then admitted to surgical ICU. We excluded patients who died from traumatic brain 

injuries (TBI) within 48 hours or who had a Glasgow Coma Scale score of 7 or lower at 

presentation with no improvement after 48 hours. In addition, patients with preexisting 

hematologic or immunologic diseases were excluded. A consent waiver for 48 hours was 

allowed by our IRB to circumvent approaching critically injured patients or family members 

during the first 24 hours after injury. In the majority of cases, consent was obtained from a 

legal guardian between 24 hours and 48 hours after injury. If no consent was obtained by 48 

hours after injury, all data were discarded. No patients who were originally enrolled into the 

study by guardian consent withdrew at later follow-up.

SHVL Calculations

Shock volume was calculated by integrating serial SI measurements into a value that 

accounts for both the duration and the magnitude of hypoperfusion during any prescribed 

period (Fig. 1). The SI values above 0.9 indicate hypoperfusion,16,18,21,22 and we chose this 

value as a hypoperfusion threshold for SHVL calculations. In our original work, we 

determined that SHVL calculated with a hypoperfusion threshold of 0.9 correlated more 

closely with organ dysfunction compared with using 1.2 or 1.5 as the threshold value.20 

Therefore, at any time point, the magnitude of hypoperfusion was determined by subtracting 

0.9 from the SI values. For SI values that were less than 0.9, the SI value for SHVL 

calculations was set to zero.

Subsequently, incremental SIi values were determined by averaging the corresponding 

adjacent SI values accounting for the 0.9 threshold. For example, in Figure 1 at time points c 

and d (within the dashed box), the SI values are is 1.1 and 1.5, respectively. The incremental 

SIi value for time interval between points c and d would equal: [(1.1 – 0.9) + (1.5 – 0.9)]/2 = 

0.4.

Incremental SHVLi values were calculated by multiplying the SIi by the duration, in 

minutes, of the corresponding time interval. For example, in Figure 1, if t(d) − t(c) was 15 

minutes, the SHVLi between time points c and d would equal 0.4 × 15 = 6 units of SHVL. 
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Finally, SHVLi values were integrated over an entire prescribed period T to yield a SHVL 

magnitude: SHVL = Σ SHVLi for t = 0 to T.

We calculated three distinct SHVL values during the initial 3 hr, 6 hr, and 24 hr periods (3 hr 

SHVL, 6 hr SHVL, and 24 hr SHVL). These three time points were chosen to quantify 

cumulative hypoperfusion during the initial resuscitation time frame and during the first 

injury day We did not calculate SHVL values beyond 24 hr. The accuracy of SHVL 

measurements is affected by temporal sampling frequency of vital signs.20 In the first 24 hr 

after injury, vital signs were typically recorded every 15 minutes during the first 8 hours to 

12 hours, and rarely greater than a period of 60 minutes. During the second 24 hr after 

injury, vital sign sampling was notably less frequent and therefore we did not calculate 

SHVL beyond the first 24 hr after injury. Organ Dysfunction: The primary outcome was 

organ dysfunction quantified by the Marshall Multiple Organ Dysfunction Score (MODS).23 

The MODS integrates daily integer scores in six organ systems including pulmonary, 

cardiovascular, renal, hepatic, hematologic, and central nervous system. Day 1 (D1) MODS 

more closely reflected the injury magnitude compared with progression of organ dysfunction 

after injury and were not used in organ dysfunction calculations.1,24 We investigated daily 

MODS to develop an optimized index of organ dysfunction. We focused on MODS from D2 

through D5 as this window corresponded to the temporal envelope in which patients either 

resolve injury or develop organ dysfunction.3 In addition, all resuscitative interventions and 

the majority surgical interventions occurred in this period. Individual daily MODS 

(MODSD2; MODSd3, MODSd4, MODSd5) and average MODS (aMODS) representing all 

possible means of combinations of sequential daily scores in D2 through D5 (aMODSD2–D3; 

aMODSD2–D4, aMODSD2–D5; aMODSD3–D4; aMODSD3–D5; aMODSD4–D5) were 

investigated for correspondence to clinical outcomes including duration of admission to 

surgical ICU (ICUDays), duration of mechanical ventilation (MVDays), and the presence of 

NIs.

Nosocomial infections were defined by CDC criteria.25 Pneumonia was diagnosed by (1) the 

presence of a new or progressive radiographic infiltrate; (2) presence of at least two of three 

clinical features, fever (>38°C), leukocytosis (>12 k) or leukopenia (<4 k) and purulent 

secretions; (3) confirmation by quantitative lower respiratory tract cultures via 

brochoalveolar lavage. Bacteremia was defined by clinical symptoms of fever and increased 

cardiac index combined with white blood cell count greater than 12,000 or less than 4,000 

and positive blood cultures. Urinary tract infection was defined by (1) at least one of the 

following signs or symptoms: fever higher than 38°C, suprapubic tenderness, costovertebral 

angle pain or tenderness, urgency, frequency, dysuria; (2) urine culture with no more than 

two species of organisms identified, at least one of which is a bacterium with 100,000 

colony forming units or greater. Nosocomial infections were confirmed by the site principal 

investigator.

Combining MODS from D2 through D5 (aMODSD2–D5) integrated the broadest set of 

information and demonstrated higher correspondence to ICUDays, MVDays, and NI 

compared with individual daily MODS or any other combinations of daily MODS. 

Therefore, aMODSD2–D5 was chosen as our primary outcome for this study.
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Data Analyses

To determine the clinical utility of aMODSD2–D5, initially, we performed logistic regression 

of aMODSD2–D5 with ICUDays and MVDays. These analyses showed progressive increases in 

both ICUDays and MVDays in patients with aMODSD2–D5 of 4 or greater (Fig. 2). 

Accordingly, we defined high-magnitude organ dysfunction as an aMODSD2–D5 of 4 or 

greater and lowmagnitude organ dysfunction as an aMODSD2–D5 less than 4. We compared 

differences in ICUDays, MVDays, and the incidence of NI in patients with an aMODSD2–D5 

either less than 4 or 4 or greater using standard t tests. We further refined our analyses and 

compared differences in ICUDays, MVDays and NI in groups stratified by aMODSD2–D5 from 

0 to less than 2, 2 or greater to less than 4, 4 or greater to less than 6, and 6 or greater with 

standard t tests.

Correspondence of 3 hr SHVL, 6 hr SHVL, and 24 hr SHVL with aMODSD2–D5 was 

determined by logistic regression. Logistic regression was also used to assess 

correspondence of initial BD (notation for BD will remain positive in this manuscript) and 

minimum pH with aMODSD2–D5. Finally, we determined how changes in BD and pH that 

occurred during the initial 24 hours after injury corresponded to organ dysfunction. The 

maximum difference between lowest and highest pH and BD, the difference between the 

initial pH and BD and those obtained 6 hr after injury, and the difference between the initial 

pH and BD and those obtained 24 hr after injury were determined. These delta values 

(differences) were investigated for correspondence to aMODSD2–D5 by logistic regression.

Thresholds of 6 hr SHVL and 24 hr SHVL values identified on regression plots were used to 

construct receiver operator characteristic (ROC) curves to predict high-magnitude organ 

dysfunction. Likewise, ROC curves were also constructed to determine the utility of initial 

BD and minimum pH to predict high-magnitude organ dysfunction. Area under the curve 

(AUC), 95% confidence intervals, sensitivity, specificity, and odds ratios of each index 

threshold are reported for each predictive model.

RESULTS

Patient Population

We prospectively enrolled 100 consecutive MIPs from April of 2015 through September of 

2016, capturing over 95% of eligible patients. The overall mortality for all 100 patients was 

9%. Fifty-one of the 100 patients had TBI. Fifteen of 51 patients were subsequently 

excluded due to severe TBI. In addition, three patients who were initially enrolled were 

subsequently diagnosed with spinal cord injury and were excluded from analysis. One 

additional patient who sustained an iatrogenic air embolus resulting in cardiac arrest and 

death during a transthoracic endovascular aortic repair was removed from analysis. This 

yielded the final study cohort of 81 patients. Six of the nine deaths in the entire 100 patient 

cohort occurred in the 15 patients excluded for severe TBI. The other two deaths occurred in 

the remaining 81 patients for a mortality rate of 2.5% in the final study cohort. 

Demographics, traditional injury severity indices, resource utilization, and global outcomes 

for the final 81 patient cohort are shown in Table 1. In addition, six patients were on 

antihypertensive medications, three patients had diabetes mellitus (one type I and two type 
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II), and four patients had chronic obstructive pulmonary disease. No patients were on 

anticoagulation medicines, or had preexisting cardiac conditions including heart block, or 

had a cardiac pacemaker. All of these patients were included in the study.

Organ Dysfunction and Clinical Indices

There was a clear and abrupt increase in ICUDays (Fig. 2A) and MVDays (Fig. 2B) in patients 

with aMODSD2–D5 of ≥ 4. ICUDays increased from 4.2 (standard deviation (s.d.) = 2.7) days 

in patients with aMODSD2–D5 less than 4 to 15.7 (s.d. = 7.4) days in patients with 

aMODSD2–D5 ≥ 4 (p < 0.0001) (Fig. 3A). Likewise, MVDays increased from 2.2 (s.d. = 2.0) 

days to 11.9 (s.d. = 7.5) days in the same aMODSD–D5 groups (p < 0.0001) (Fig. 3B). 

Finally, NI occurred in 18.8% of patients with aMODSD2–D5 less than 4 compared to 63.6% 

in patients with aMODSD2–D5 greater than 4 (p < 0.0001) (Fig. 3C). There were no 

differences in ICUDays, MVDays, or NI in patients with aMODSD2–D5 of 4 or greater to less 

than 6 compared with patients with aMODSD2–D5 of 6 or greater. These results 

demonstrated that aMODSD2–D5 was a clinically meaningful phenotype which effectively 

delineated lowmagnitude organ dysfunction as aMODSD2–D5 less than 4 and high-

magnitude organ dysfunction as aMODSD2–D5 of 4 or greater.

SHVL Versus Organ Dysfunction

Logistic regression of 3 hr SHVL (R2 = 0.48; p < 0.001), 6 hr SHVL (R2 = 0.52; p < 0.001) 

(Fig. 4A), and 24 hr SHVL (R2 = 0.49; p < 0.001) (Fig. 4B) with aMODSD2–D5 

demonstrated that SHVL values corresponded closely to the magnitude of organ 

dysfunction. Shock volume calculated at all three periods demonstrated higher 

correspondence to aMODSD2–D5 compared with initial BD (R2 = 0.32) (Fig. 4C) and 

minimum pH (R2 = 0.32) (Fig. 4D). In addition, SHVL at all time points demonstrated 

better correspondence with aMODSD2–D5 compared with the maximum delta values of BD 

(R2 = 0.2949) and pH (R2 = 0.2633), the 6 hr delta values of BD (R2 = 0.1499) and pH (R2 = 

0.0752), and the 24 hr delta values of BD (r2 = 0.2897) and pH (R2 = 0.2133). Regression 

plots (Figs. 4A–B) identified thresholds of 6 hr SHVL of 40 and 24 hr SHVL of 70 where 

the incidence of high-magnitude organ dysfunction (aMODSD2–D5 ≥ 4) began to increase 

more rapidly. Similarly, we identified thresholds of initial BD ≥ 6 (Fig. 4C) and a minimum 

pH of ≤ 7.24 (Fig. 4D) as thresholds corresponding to increasing aMODSD2–D5 ≥ 4. 

Therefore, these thresholds were used to construct ROC curves and calculate odds ratios to 

predict patients who would develop high-magnitude organ dysfunction. The ROC curves for 

SHVL indices, initial BD and minimum pH and corresponding AUC, ORs, sensitivity and 

specificity to predict high-magnitude organ dysfunction are shown in Figure 5. Both 6 hr 

SHVL and 24 hr SHVL demonstrated higher AUCs compared with initial BD and minimum 

pH. In addition, 24 hr SHVL was more sensitive than any of the other indices for identifying 

patients at risk for aMODSD2–D5 ≥ 4. In summary, SHVL demonstrated greater 

correspondence with organ dysfunction compared to initial BD, minimum pH, and changes 

in BD and pH occurring during the initial 24 hr. In addition, SHVL more accurately 

identified patients at risk for high-magnitude organ dysfunction compared to initial BD and 

minimum pH.
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SHVL Versus Infection Complications

Twenty-nine (35.8%) of 81 patients developed NI. Mean 3 hr SHVL in patients that 

developed NI was 36.2 (s.d. = 40.1) compared with 19.6 (s.d. = 28.0; p = 0.054) in patients 

who did not develop NI. Mean 6 hr SHVL in patients that developed NI was 59.6 (s.d. = 

55.2) compared to 34.3 (s.d. = 41.1; p = 0.036) in patients who did not develop NI. Finally, 

mean 24 hr SHVL in patients that developed NI was 191.0 (s.d. = 199.9) compared to 107.1 

(s.d. = 124.6; p = 0.047) in patients who did not develop NI. Seven patients developed nine 

surgical site wound infections which included two abdominal wound infections, one chest 

wound infection, and six extremity wound infections. The mean 3 hr SHVL, 6 hr SHVL, and 

24 hr SHVL calculations in patients who developed surgical site wound infections were 58.9 

(s.d. = 41.9), 100.6 (s.d. = 57.2), and 347.1 (s.d. = 251.9). These results demonstrate how 

high levels of cumulative hypoperfusion significantly extrapolate into risk of nosocomial and 

surgical site wound infections.

DISCUSSION

SHVL had increased correspondence with organ dysfunction compared to initial BD and 

minimum pH. In addition, SHVL had increased correspondence to organ dysfunction 

compared to changes in BD and pH that occurred in the first 6 hr to 24 hr after injury. SHVL 

measured at three distinct time intervals, and as early as three hours after injury, numerically 

accounted for nearly 50% of observed organ dysfunction (R2 = 0.48 to 0.52; Figs. 4A–B). 

SHVL accounts for the entire time-magnitude hypoperfusion history specific to the 

individual patient within a prescribed period. For example, the 24 hr SHVL was informed by 

the entire SI data set in the initial 24 hr after injury and demonstrated the highest sensitivity 

and odds ratio of identifying patients at risk for high-magnitude (aMODSD2–D5 ≥ 4) organ 

dysfunction. However, the 24 hr SHVL and 6 hr SHVL had effectively identical 

correspondence with the magnitude of organ dysfunction (Figs. 4A and B) and AUC indices 

for predicting patients who developed high-magnitude organ dysfunction. These 

observations likely reflect that the majority of patients in HS were successfully resuscitated 

within six hours after injury. The modest increases in sensitivity and odds ratio demonstrated 

by 24 hr SHVL for predicting high-magnitude organ dysfunction are consistent with clinical 

observations that patients who have occult hypoperfusion persisting 24 hr after injury are at 

risk for organ dysfunction, complications, and death.26–28 It is possible that the higher 

correspondence between SHVL and organ dysfunction compared with all of the measures of 

BD and pH reflects that SHVL is informed by a complete temporal set of data that accounts 

for the entire hypoperfusion history.

We did not compare SHVL with lactate only because we do not routinely measure lactate in 

our hospital. It is possible that lactate would have better correspondence to organ 

dysfunction, and lactate thresholds may have better predicted high-magnitude organ 

dysfunction compared with BD and pH measurements and any of the SHVL calculations. 

However, it is possible that circulating lactate serum values would parallel BD and pH 

measurements, and correspondence between lactate and organ dysfunction would be similar 

to correspondence of aMODSD2–D5 with initial BD and minimum pH. Therefore, we cannot 

conclude that SHVL is a superior index to predict organ dysfunction compared with lactate.
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Shock volume calculations would presumably be affected by preinjury demographics, 

hemorrhage severity, patient response to injury, and resuscitation interventions. During the 

study period, we used the same resuscitation strategy of two units of PRBCs: one unit of 

FFP for patients who received blood products. Our hospital has since evolved after the 

conclusion of this study to the 1:1:1 protocol of PRBCs: FFP: Platelets. Differences in 

response to resuscitation interventions would invariably be reflected in both the magnitude 

and rate of change of SHVL. However, we did not specifically account for changes in SHVL 

(or BD and pH) pertaining to individual resuscitation measures in this study. Therefore, it is 

not known if SHVL is an effective metric to judge resuscitation. In addition, our study 

population age bracket was purposely narrowed in an attempt to minimize confounding 

effects of preexisting medical comorbidities. Therefore, it is unknown how SHVL 

corresponds to organ dysfunction in patients older than 55 years or in patients with medical 

comorbidities particularly pertaining to cardiac disease. Finally, we studied trauma patients 

who were initially admitted to ICU, representing a bias toward more seriously injured 

patients. It remains unknown how SHVL risk-stratifies organ dysfunction in patients who 

were less injured and not initially admitted to a higher level of care.

The primary objective of this investigation was to determine if SHVL could accurately 

predict the magnitude of organ dysfunction. Therefore, it was important to quantify organ 

dysfunction using methods that were clinically relevant. Researchers have debated optimal 

organ dysfunction phenotypes for experiments similar to our study.1,4,5,10 There are multiple 

scoring systems that quantify organ dysfunction that are notably similar. Therefore, instead 

of comparing how SHVL, BD, and pH corresponded to organ dysfunction using different 

organ scoring systems, we adapted an alternative approach that integrated progression of 

daily MODS to investigate a temporally expanded signature of organ dysfunction. We chose 

to investigate MODS from D2 through D5 which is admittedly arbitrary, but this 

corresponded to the period in which resuscitation was completed and the majority of 

surgical interventions occurred. In addition, it corresponded to a timeframe in which nearly 

all patients either resolved their injuries or developed longer-term illness with prolonged 

admission to ICU, consistent with previous investigations.3,10,23,29 This approach identified 

a markedly stark cutoff value of aMODSD2–D5 of 4 (Fig. 2) which delineated patients into 

groups of benign or complicated outcomes (Fig. 3). Patients who had an aMODSD2–D5 of < 

4 had little morbidity and resource utilization. In contrast, patients with an aMODSD2–D5 ≥ 4 

had significant increases in NI, ICUDays and MVDays. These data suggest that not only is 

aMODSD2–D5 a meaningful phenotype of organ dysfunction, but this index could serve as a 

therapeutic endpoint to judge efficacy of resuscitative, surgical and supportive interventions 

in MIPs. Additionally, indices such as SHVL calculations that identify patients at risk of 

developing an aMODSD2–D5 ≥ 4 could alert clinicians early in the injury course and expand 

treatment windows to optimize surgical and supportive interventions. Finally, SHVL can be 

calculated in real time without any invasive monitoring or laboratory facilities. It may be 

particularly applicable for austere conditions, such as forward echelons in military care (i.e., 

Role 2 facilities) to titrate evacuation decisions. Alternatively, software adaptations to 

standard vital sign monitoring can readily calculate and display changes in SHVL in real 

time on any standard ICU monitor. Ongoing changes in real-time SHVL measurements 

could be readily available to alert physicians and nursing personnel that patients are not 
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adequately resuscitated, or may be reverting back into HS after initial successful 

resuscitation. However, rigorous prospective investigation will be necessary to determine the 

clinical utility of SHVL.

Traditionally, multiple organ failure (MOF) using MODS has been defined as two 

consecutive days of a MODS greater than 5.30 Therefore, MOF was present in 24 (29.6%) of 

81 patients in this cohort. Twenty-three of 24 patients who were positive for MOF30 in this 

series had high-magnitude organ dysfunction with an aMODSD2–D5 of 4 or greater. In 

contrast, there were 9 (15.8%) of 57 patients who did not meet criteria for MOF that had 

high-magnitude organ dysfunction with an aMODSD2–D5 of 4 or greater. In these nine 

patients, six (66.7%) developed NI, mean ICUDays was 15.1 (7 to 31) days, and mean 

MVDays was 13.2 (5 to 31) days. In this small sample of patients, this suggests that 

integrating organ dysfunction information over an expanded window better reflects clinical 

outcomes compared to the traditional definition of MOF by the Marshall Score criteria.

Shock volume accuracy is dependent on vital sign sampling frequency and accuracy of SIi 

values. In patients with prolonged time between vital sign recordings, an aberrantly high or 

low SI value measured at the beginning or the end of the prolonged interval would be 

multiplied by a large time increment and inadvertently increase or decrease the SHVLi 

calculation. In addition, inaccurate SI values would inadvertently affect the preceding and 

the subsequent SHVLi calculations. For example, in a patient with a SBP of 100 and a 

prevailing HR of 80, the SIi would be 0.8, and this measurement would minimize the two 

corresponding SHVLi calculations. If the same patient’s HR was transiently increased to 140 

secondary to pain or an ICU-based intervention, the SIi would increase to 1.4 and this would 

significantly increase both corresponding SHVLi- calculations. Finally, SHVL calculations 

assume that the SI threshold of 0.9 indicates hypoperfusion. Shock Index has been shown to 

predict mortality, transfusion requirements, and organ dysfunction, and has been shown to be 

equally as accurate as BD in predicting transfusion requirements.18,22 A recent review and 

meta-analysis have concluded that an SI of 0.9 was the best threshold for hypoperfusion.
18,21,22

In conclusion, SHVL is a measure of cumulative hypoperfusion generated from serial vital 

sign measurements. It is an effective tool that can predict the magnitude of anticipated organ 

dysfunction and stratify the risk of developing high-magnitude organ dysfunction in MIPs.
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Figure 1. 
Schematic depicting SHVL calculations. Five SI values (small black diamonds) are shown at 

five corresponding time points a through e (time points designated t(a), t(b), …). Four 

distinct incremental SHVLi segments (SHVLa–b, SHVLb–c, SHVLc–d, and SHVLd–e) are 

depicted between time points a through e. The mean incremental SIi value (above the 0.9 

hypoperfusion threshold depicted by the dashed line) between time points c and d is 

illustrated by the large diamond within the dashed box. It is the average of the adjacent SI 

values, SIc and SId. This SIi value is multiplied by the time duration of the interval t (t = t(d) 

– t(c) in minutes) to yield the incremental SHVLc–d value. For the prescribed time interval 

from 0 to T, all of the incremental SHVLi are summed to yield the SHVL. For example, for 

the 3 hr SHVL, all incremental SHVLi from admission until 3 hr after admission would be 

summed. In this figure, SHVL would include all SHVLi from 0 to T.
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Figure 2. 
Scatterplots demonstrate a marked increase in ICUDays (A) and MVDays (B) in patients who 

had an aMODSD2–D5 ≥ 4. Note the patient in the dashed box died on hospital day 5.
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Figure 3. 
Clinical indices demonstrated marked increases in duration of admission to intensive care 

(A), duration of mechanical ventilation (B), and the incidence of NIs (C) in patients with an 

aMODSD2–D5 ≥ 4. Horizontal bars demonstrate differences considered statistically 

significant (p < 0.05) by t-testing.
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Figure 4. 
Shock volume calculated at 6 hr (A) and 24 hr (B) demonstrated excellent correspondence to 

organ dysfunction (aMODSD2–D5) with R2 values from 0.49 to 0.52. Correspondence 

between SHVL and aMODSD2–D5 was greater than that seen with initial BD (C) and 

minimum pH (D). 3hrSHVL (data not shown) had similar correspondence with 

aMODSD2–D5 compared with 6hrSHVL and 24hrSHVL with an R2 = 0.48.
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Figure 5. 
ROC curves comparing how 6hrSHVL and 24hrSHVL (top row) and initial BD and 

minimum pH (bottom row) predict patients who will develop high-magnitude organ 

dysfunction defined as aMODSD2–D5 ≥ 4. AUC (upper confidence limit, lower confidence 

limit), odds ratio (OR; upper confidence limit, lower confidence limit), and sensitivity/

specificity are displayed. 24hrSHVL demonstrated the highest predictive power of high-

magnitude organ dysfunction.
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TABLE 1.

Cohort Demographics, Injury Severity and Resource Utilization

Age 36.5 (± 11.4) y

Sex 60 Male/21 Female

Injury Severity Score 31.3 (± 14.1)

Initial BD 6.1 (± 4.5)

Minimum pH 7.23 (± 0.10)

ICUDays 8.8 (± 7.6) d

MVDays 6.1 (± 6.9) d

Mortality 2/81 (2.5%)

MOF 24/81 (29.8%)
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