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Abstract: The aim of this paper is to accurately describe the blowup of Jang’s equa-
tion. First, we discuss how to construct solutions that blow up at an outermost MOTS.
Second, we exclude the possibility that there are extra blowup surfaces in data sets with
non-positive mean curvature. Then we investigate the rate of convergence of the blowup
to a cylinder near a strictly stable MOTS and show exponential convergence with an
identifiable rate near a strictly stable MOTS.

1. Introduction

This paper is concerned with the examination of the relation of Jang’s equation to mar-
ginally outer trapped surfaces (MOTS). To set the perspective, we consider Cauchy data
(M, g, K ) for the Einstein equations. Such data sets are 3-manifolds M equipped with a
Riemannian metric together with a symmetric bilinear form K representing the second
fundamental form of the time slice M in space-time. A marginally outer trapped surface
is a surface with θ+ = H + P = 0, where H is the mean curvature of � in M and
P = tr K − K (ν, ν) for the normal ν to �.

In the paper [AM07], inspired by an idea of Schoen [Sch04], we constructed MOTS
in the presence of barrier surfaces by inducing a blow-up of Jang’s equation. In this
context, Jang’s equation [SY81,Jan78] is an equation of prescribed mean curvature for
the graph of a function in M × R. For details we refer to Sect. 2.

In this note, we take a slightly different perspective. Consider a data set (M, g, K )
with a non-empty outer boundary ∂+ M and assume that we are given the outermost
MOTS � in (M, g, K ). Here, outermost means that there is no other MOTS on the
outside of �. From [AM07] it follows that (M, g, K ) always contains a unique such
surface, or does not contain outer trapped surfaces at all, under the assumption that ∂M
is outer untrapped. As stated in Theorem 3.1, we show that there exists a solution f

� Research on this project started while the author was supported in part by a Feodor-Lynen Fellowship
of the Humboldt Foundation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81607186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


62 J. Metzger

to Jang’s equation that actually blows up at �, assuming that ∂M is inner and outer
untrapped. By blow-up we mean that outside from� the function f is such that graph f
is a smooth submanifold of M ×R with a cylindrical end converging to�×R. There is
however a catch, as f may blow up at other surfaces, too. These surfaces are marginally
inner trapped. In Theorem 3.4 we show that the other blow-up surfaces can not occur if
the data set has non-positive mean curvature.

To put the result in perspective note that if the dominant energy condition holds,
the graph of f is of non-negative Yamabe type and thus can be equipped with a (sin-
gular) metric of zero scalar curvature. This was used by Schoen and Yau in [SY81] to
prove the positive mass theorem. Later Bray [Bra01] proposed to use Jang’s equation to
relate the Penrose conjecture in its general setting to the Riemannian Penrose inequality
[HI01,Bra01] on a manifold constructed from Jang’s graph. One of the main questions
in this program is whether or not Jang’s equation can be made to blow up at a spe-
cific MOTS. This question was raised in the literature, cf. for example [MÓM04] where
this is discussed in the rotationally symmetric case. Here we give the positive answer
that blow-up solutions exist at outermost MOTS. The author recently learned that the
existence of the blow-up solution is used in [Khu09] to prove a Penrose-like inequality.

With the blow-up constructed, we can turn to the asymptotic behavior of the blowup
itself. It has been shown in [SY81] that such a blow-up must be asymptotic to a cylinder
over the outermost MOTS. In Theorems 4.2 and 4.4 we show that under the assumption
of strict stability the convergence rate is exponential with a power directly related to
the principal eigenvalue of the MOTS. The general idea is to show the existence of a
super-solution with at most logarithmic blow-up of the desired rate. Turning the picture
sideways yields exponential decay, when writing the solution as a graph over the cylinder
in question. Furthermore, we show that beyond a certain decay rate, the solution must
be trivial, thus exhibiting the actual rate.

We expect that the knowledge of these asymptotics is tied to the question whether
the blow-up solution is unique. Furthermore note that the constant in the Penrose-like
inequality in [Khu09] depends on the geometry of the solution. We thus expect that the
value on this constant is related to the asymptotic behavior near the blow-up cylinder.

Before turning to these results, we introduce some notation in Sect. 2. Section 3 pro-
ceeds with the construction of the the blow-up. We will not go into details here, but
emphasize the general idea and point to the results needed from the paper [AM07]. In
Sect. 4, we perform the calculation of the asymptotics.

2. Preliminaries

Let (M, g, K ) be an initial data set for the Einstein equations. That is M is a
3-dimensional manifold, g a Riemannian metric on M and K a symmetric 2-tensor.
We do not require any energy condition to hold.

Assume that ∂M is the disjoint union ∂M = ∂−M ∪ ∂+ M , where ∂±M are smooth
surfaces without boundary. We refer to ∂−M as the inner boundary and endow it with the
normal vector ν pointing into M . The outer boundary ∂+ M is endowed with the normal
ν pointing out of M . We denote by H [∂M] the mean curvature of ∂M with respect to
the normal vector field ν, and by P[∂M] = tr∂M K the trace of the tensor K restricted
to the 2-dimensional surface ∂M . Then the inward and outward expansions of ∂M are
defined by

θ±[∂M] = P[∂M] ± H [∂M].
Assume that θ+[∂−M] = 0, and that θ+[∂+ M] > 0 and θ−[∂+ M] < 0.
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If � ⊂ M is a smooth, embedded surface homologous to ∂+ M , then � bounds a
region � together with ∂+ M . In this case, we define θ±[�] as above, where H is com-
puted with respect to the normal vector field pointing into� (that is in direction of ∂+ M).
� is called a marginally outer trapped surface (MOTS), if θ+[�] = 0. We say that ∂M
is an outermost MOTS, if there is no other MOTS in M , which is homologous to ∂+ M .
In [AM07] it is proved that for any initial data set (M, g, K ) which contains a MOTS,
there is also an outermost MOTS surrounding it.

Let � ⊂ M be a MOTS and consider a normal variation of � in M , that is a map
F : � × (−ε, ε) → M such that F(·, 0) = id� and ∂

∂s

∣
∣
s=0 F(p, s) = f ν, where f is

a function on � and ν is the normal of �. Then the change of θ+ is given by

∂θ+[F(�, s)]
∂ds

∣
∣
∣
∣
s=0

= L M f,

where L M is a quasi-linear elliptic operator of second order along �. It is given by

L M f = −� f + 2S(∇ f ) + f
(

div S − |χ+|2 − |S|2 +
1

2
�Sc − µ− J (ν)

)

.

In this expression ∇, div and � denote the gradient, divergence and Laplace-Beltrami
operator tangential to �. The tangential 1-form S is given by S = K (·, ν)T , χ+ is the
bilinear form χ+ = A + K� , where A is the second fundamental form of � in M and
K� is the projection of K to T�× T�. Furthermore, �Sc denotes the scalar curvature
of �, µ = 1

2 (
M Sc − |K |2 + (tr K )2), and J = M divK − d tr K . For a more detailed

investigation of this operator we refer to [AMS05] and [AMS07].
The facts we will need here are that L M has a principal eigenvalue λ, which is real

and has a one-dimensional eigenspace which is spanned by a positive function. If λ is
non-negative � is called stable, and if λ is positive, � is called strictly stable. In par-
ticular, if � is strictly stable as a MOTS, there exists an outward deformation strictly
increasing θ+.

In M̄ = M × R, we consider Jang’s equation [Jan78,SY81] for the graph of a func-
tion f : M → R. Let N := graph f = {(x, z) : z = f (x)}. The mean curvature H[ f ]
of N with respect to the downward normal is given by

H[ f ] = div

(

∇ f
√

1 + |∇ f |2
)

.

Define K̄ on M̄ by K̄(x,z)(X,Y ) = Kx (πX, πY ), where π : T M̄ → T M denotes the
orthogonal projection onto the horizontal tangent vectors. Let

P[ f ] = trN K̄ .

Then Jang’s equation becomes

J [ f ] = H[ f ] − P[ f ] = 0. (2.1)
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Fig. 1. The situation in Theorem 3.1. All of the shaded region belongs to M , whereas f is only defined in�0

3. The Blowup

The main result of this section is that we can construct a solution to Jang’s equation
which blows up at the outermost MOTS in (M, g, K ) and has zero Dirichlet boundary
data at ∂+ M . In fact, we chose the assumptions on the outer boundary ∂+ M so that we
can prescribe more general Dirichlet data there. The focus here lies on the blow-up in
the interior, so that we do not investigate the optimal conditions for ∂+ M .

Theorem 3.1. If (M, g, K ) is an initial data set with ∂M = ∂−M ∪ ∂+ M such that
∂−M is an outermost MOTS, θ+[∂+ M] > 0 and θ−[∂+ M] < 0, then there exists an
open set �0 ⊂ M and a function f : �0 → R such that

1. M\�0 does not intersect ∂M,
2. θ−[∂�0] = 0 with respect to the normal vector pointing into �0,
3. J [ f ] = 0,
4. N + = graph f ∩ M × R+ is asymptotic to the cylinder ∂−M × R+,
5. N− = graph f ∩ M × R− is asymptotic to the cylinder ∂�0 × R−, and
6. f |∂+ M = 0.

For data sets (M, g, K ) which do not contain surfaces with θ− = 0, the above theorem
implies the following result.

Corollary 3.2. If (M, g, K ) is as in Theorem 3.1, and in addition there are no subsets
� ⊂ M with θ−[∂�] = 0 with respect to the normal pointing out of�, then there exists
a function f : M → R such that

1. J [ f ] = 0,
2. N = graph f is asymptotic to the cylinder ∂−M × R+,
3. f |∂+ M = 0.

Remark 3.3. Analogous results hold if (M, g, K ) is asymptotically flat with appropri-
ate decay of g and K instead of having an outer boundary ∂+ M . Then the assertion
f |∂+ M = 0 in Theorem 3.1 has to be replaced by f (x) → 0 as x → ∞.

The proof of Theorem 3.1 is largely based on the tools developed in [SY81 and AM07].
Thus we will not include all details here, but provide a summary, which facts will have
to be used.
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Proof. We will assume that (M, g, K ) is embedded into (M ′, g′, K ′) which extends M
beyond the boundary ∂−M such that ∂−M lies in the interior of M ′, without further
requirements.

Let ∂−M = ∪N
i=1�i where the �i are the connected components of ∂M . As ∂M is

an outermost MOTS, each of the �i is stable [AM07, Cor. 5.3].
Following the proof of [AM07, Th. 5.1], we deform ∂−M to a surface �s by push-

ing the components �i out of M , into the extension M ′. To this end, let φi > 0 be
the principal eigenfunction of the stability operator of �i and extend the vector field
Xi = −φiνi to a neighborhood of �i in M ′. Flowing �i by Xi yields a family of sur-
faces �s

i , s ∈ [0, ε) so that the �s
i form a smooth foliation for small enough ε with

�s
i ∈ M ′ \ M . If �i is strictly stable then

∂

∂s

∣
∣
∣
∣
s=0

θ+[�s] = −λφ < 0,

where λ is the principal eigenvalue of�i . Thus, for small enough ε, we have θ+[�s
i ] < 0

for all s ∈ (0, ε).
If �i has principal eigenvalue λ = 0, then the �s

i satisfy

∂

∂s

∣
∣
∣
∣
s=0

θ+[�s] = 0.

In this case it is possible to change the data K ′ on �s
i as follows:

K̃ = K ′ − 1
2ψ(s)γs, (3.1)

where γs is the metric on �s and ψ is a smooth function ψ : [0, ε] → R. The operator
θ̃+, which means θ+ computed with respect to the data K̃ instead of K ′, satisfies

θ̃+[�s
i ] = θ+[�s

i ] − ψ(s).

It is clear from Eq. (3.1) that ψ can be chosen such that ψ(0) = ψ ′(0) = 0 and
θ̃+[�s

i ] < 0 for all s ∈ (0, ε) provided ε is small enough. Then K̃ is C1,1 when
extended by K to the rest of M .

Replace each original boundary component �i of M by a surface �εi as constructed
above, and replace K ′ with K̃ , such that the following properties are satisfied. Let M̃
denote the manifold with boundary components�εi resulting from this procedure. Thus
we construct from (M, g, K ) a data set (M̃, g′, K̃ ) with the following properties:

1. M ⊂ M̃ with g′|M = g, K̃ |M = K , and ∂+ M = ∂+ M̃ ,
2. θ+[∂−M̃] < 0, and
3. the region M̃ \ M is foliated by surfaces �s with θ+(�s) < 0.

The method developed in Sect. 3.2 in [AM07] now allows the modification of the data
(M̃, g′, K̃ ) to a new data set, which we also denote by (M̃, g̃, K̃ ), although K̃ changes
in this step. This data set has the following properties:

1. M ⊂ M̃ with g′|M = g, K̃ |M = K , and ∂+ M = ∂+ M̃ ,
2. θ+[∂−M̃] < 0,
3. H [∂−M̃] > 0, where H is the mean curvature of ∂−M with respect to the normal

pointing out of ∂−M̃ ,
4. the region M̃ \ M is foliated by surfaces �s with θ+(�s) < 0.
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By Sect. 3.3 in [AM07] this enables us to solve the boundary value problem

⎧

⎪⎨

⎪⎩

J [ fτ ] = τ fτ in M̃
fτ = δ

2τ on ∂−M̃
fτ = 0 on ∂+ M̃

(3.2)

where δ is a lower bound for H on ∂−M . The solvability of this equation follows, pro-
vided an estimate for the gradient at the boundary can be found. The barrier construction
at ∂−M̃ was carried out in detail in [AM07], whereas the barrier construction at ∂+ M̃ is
standard due to the stronger requirement that θ+[∂+ M] > 0 and θ−[∂+ M] < 0.

The solution fτ to Eq. (3.2) satisfies an estimate of the form

sup
M̃

| fτ | + sup
M̃

|∇ fτ | ≤ C

τ
, (3.3)

where C is a constant depending only on the data (M̃, g̃, K̃ ) but not on τ .
The gradient estimate implies in particular that there exists an ε > 0 independent of

τ such that

fτ (x) ≥ δ
4τ ∀x with dist(x, ∂−M̃).

The graphs Nτ have uniformly bounded curvature in M̃ × R away from the boundary.
This allows the extraction of a sequence τi → 0 such that the Nτi converge to a mani-
fold N , cf. [AM07, Prop. 3.8], [SY81, Sect. 4]. This convergence determines three open
subsets of M̃ :

�− := {x ∈ M : fτi (x) → −∞ locally uniformly as i → ∞},
�0 := {x ∈ M : lim sup

i→∞
| fτi (x)| < ∞},

�+ := {x ∈ M : fτi (x) → ∞ locally uniformly as i → ∞}.

From the fact that the fτ blow up near ∂−M̃ , we have that �+ �= ∅ and �+ contains a
neighborhood of ∂−�̃. As already noted in [SY81] ∂�+ \∂ M̃ consists of MOTS. As the
region M̃ \ M is foliated by surfaces with θ+ < 0, we must have that �+ ⊃ (M̃ \ M)
and hence ∂�+ is a MOTS in M . As ∂−M was assumed to be an outermost MOTS in
M , we conclude that the closure of �+ is M̃ \ M .

The barriers near ∂+ M are so that they imply that the fτ are uniformly bounded near
∂+ M . Thus �0 contains a neighborhood of ∂+ M and �0 ⊂ M .

The limit manifold N over �0 is a graph satisfying J [ fτ ] = 0, and has the desired
asymptotics. ��

We will now discuss a geometric condition to assert that the resulting graph is non-
singular on M , i.e., M = �0 in Theorem 3.1.

Theorem 3.4. Let (M, g, K ) be as in Theorem 3.1 with tr K ≤ 0. Then in the assertion
of Theorem 3.1 we have that �0 = M, that is f is defined on M and has no other
blow-up than near ∂−M.
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Proof. This follows from a simple argument using the maximum principle. Let fτ be a
solution to the regularized problem

H[ fτ ] − P[ fτ ] − τ fτ = 0 (3.4)

in M̃ , as in the proof of Theorem 3.1. We claim that fτ can not have a negative minimum
in the region where the data is unmodified. Assume that x ∈ M is such a minimum.
There we have H[ fτ ] ≥ 0, and since graph f is horizontal at x we have that

P[ fτ ] = tr K ≤ 0,

thus the right-hand side of (3.4) is non-negative, whereas τ fτ is assumed to be negative,
a contradiction.

Since we know that in the limit τ → 0, the functions fτ must blow-up in the modified
region which lies in �+, we infer a lower bound for fτ from the above argument. Thus
�0 = M as claimed. ��

4. Asymptotic Behavior

Here, we discuss a refinement of [SY81, Cor. 2], which says that N = graph f converges
uniformly in C2 to the cylinder ∂−M × R for large values of f . A barrier construction
allows us to determine the asymptotics of this convergence. Before we present our result,
recall the statement of [SY81, Cor. 2]:

Theorem 4.1. Let N = graph f be the manifold constructed in the proof of Theorem 3.1
and let� be a connected component of ∂−M. Let U be a neighborhood of� with positive
distance to ∂−M \�.

Then for all ε > 0 there exists z̄ = z̄(ε), depending also on the geometry of
(M, g, K ), such that N ∩ U × [z̄,∞) can be written as the graph of a function u over
Cz̄ := � × [z̄,∞), so that

|u(p, z)| + | Cz̄ ∇u(p, z)| + | Cz̄ ∇2u(p, z)| < ε

for all (p, z) ∈ Cz̄. Here, Cz̄ ∇ denotes covariant differentiation along Cz̄.

If � is strictly stable, we can in fact say more about u.

Theorem 4.2. Assume the situation of Theorem 4.1. If in addition � is strictly stable
with principal eigenvalue λ > 0, we have that for all δ <

√
λ there exists c = c(δ)

depending only on the data (M, g, K ) and δ such that

|u(p, z)| + | Cz̄ ∇u(p, z)| + | Cz̄ ∇2u(p, z)| ≤ c exp(−δz).
Proof. Denote by β > 0 the eigenfunction to the principal eigenvalue λ on � normal-
ized such that max� β = 1. We denote by ν the normal vector field of � pointing into
M . Consider the map

� : � × [0, s̄] → M : (p, s) �→ expM
p (sβν). (4.1)

Given ε > 0 we can choose s̄ > 0 small enough such that the surfaces �s = �(�, s)
with s ∈ [0, s̄] form a local foliation near � with lapse β such that

θ+[�s] ≥ λ(1 − ε)βs.
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Denote the region swiped out by these �s by Us̄ . Note that ∂Us̄ = � ∪ �s̄ and
dist(�s̄, �) > 0. We can assume that dist(�s̄, ∂M) > 0. On Us̄ we consider func-
tions w of the form w = φ(s). For such functions Jang’s operator can be computed as
follows:

J [w] = φ′

βσ
θ+ −

(

1 +
φ′

βσ

)

P − σ−2 K (ν, ν) +
φ′′

β2σ 3 ,

whereσ 2 = 1+β−2(φ′)2, andφ′ denotes the derivative ofφwith respect to s, cf. [AM07].
The quantities θ+, K (ν, ν) and P are computed on the respective �s .

Note that with our normalization

σ−2 ≤ β2|φ′|−2 ≤ |φ′|−2,

and if we assume that φ′ ≥ µ for a large µ = µ(β) we have
∣
∣
∣
∣
1 +

φ′

βσ

∣
∣
∣
∣
≤ 2|φ′|−2.

Furthermore,
∣
∣
∣
∣

φ′′

β2σ 3

∣
∣
∣
∣
= |φ′′|
β2(1 + β−2φ′2)3/2

≤ |φ′′|
β2(β−2φ′2)3/2

= β
|φ′′|
|φ′|3 .

On the other hand, increasing µ = µ(β, ε) if necessary, we have

|φ′|
βσ

≥ 1 − ε,

if |φ′| ≥ µ.
In combination we find that

J [w] ≤ −λ(1 − ε)βs +
c1

|φ′|2 + β
|φ′′|
|φ′|3 , (4.2)

with c > 0 depending on ε and the data (M, g, K ), provided |φ′| ≥ µ and φ′ < 0.
Choosing φ(s) = a log s with a = (1 − ε)−1λ−1/2, we calculate that

φ′(s) = a

s
, φ′′(s) = − a

s2 ,

so that

1

|φ′|2 = s2

a2 = (1 − ε)2λs2,
φ′′

|φ′|3 = s

a2 = (1 − ε)2λs.

Thus we can choose s̄ so small that |φ′| ≥ µ(β, ε) and the estimate in (4.2) holds. We
can then decrease s̄ further, so that s̄ ≤ εβ/(c1(1−ε)). This choice makes the right-hand
side of (4.2) non-positive, that is J [w] ≤ 0. Hence, we obtain a super-solution w with

Jτw ≤ 0

at least where w ≥ 0, that is near �.
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As w blows up near the horizon, and the fτ are bounded uniformly in τ on �s̄ , we
can translate w vertically to w̄ = w + b with a suitable b > 0 so that

fτ |�s̄ ≤ w̄|�s̄

for all τ > 0. Then the maximum principle implies that fτ ≤ w̄ for all τ > 0 in Us̄ and
consequently the function f constructed in Theorem 3.1 also satisfies f ≤ w̄.

Near �, the graph of w̄ can be written as the graph of a function v̄ over �× (z̄,∞),

where v decays exponentially in z. This is due to the fact that by the assumptions on β,
the parameter s is comparable to the distance to �. By the above construction u ≤ v,
where u is the function from Theorem 4.1. Thus we find the claimed estimate for u.

Getting the desired estimates for the derivatives of u is then a standard procedure,
but as it is a little work to set the stage, we briefly indicate how to proceed.

We choose coordinates of a neighborhood � × R in a slightly different manner as
above. Let �̄ : � × (−ε, ε) → M be the map

�̄ : � × (−ε, ε)× R → M × R : (x, s, z) �→ (

expx (sν), z
)

.

For a function h on Cz̄ we let graph�̄ h be the set

graph�̄ h = {�̄(x, h(x), z) : (x, z) ∈ � × R}.
From Theorem 4.1, it is clear that for large enough z̄ the set N ∩ M ×[z̄,∞) can be writ-
ten as graph�̄ h, where h decays exponentially by the above reasoning. We can compute
the value of Jang’s operator for h as follows:

(H̄ − P̄)[N ] = J h,

where J is a quasi-linear elliptic operator of mean curvature type. To be more precise,
J h has the form

J h = ∂2
z h + γ i j

h(x,z)∇2
i, j h − 2γ i j

h(x,z)∂i (h)K (∂s, ∂ j )− θ+[�h(x,z)]
+ Q(h, Cz̄ ∇h, Cz̄ ∇2h),

(4.3)

where γs is the metric on �s and Q is of the form

Q(h, Cz̄ ∇h, Cz̄ ∇2h) = h ∗ Cz̄ ∇h + Cz̄ ∇h ∗ Cz̄ ∇h + Cz̄ ∇h ∗ Cz̄ ∇h ∗ Cz̄ ∇2h,

where ∗ denotes some contraction with a bounded tensor. Furthermore, the vectors ∂i ,
i = 1, 2 denote directions tangential to � and ∂z the direction along the R-factor in Cz̄ .

By freezing coefficients, we therefore conclude that h satisfies a linear, uniformly
elliptic equation of the form

ai j∂i∂ j h + 〈b, Cz̄ ∇h〉 − θ+[�h(x,z)] = 0.

By construction we have that |θ+[�s]| ≤ κs for some fixed κ . Thus θ+[�h(x,z)] decays
exponentially in z.

Now we are in the position to use standard interior estimates for linear elliptic equa-
tions to conclude the decay of higher derivatives of h. This decay translates back into the
decay of the first and second derivatives of u as the coordinate transformation is smooth
and controlled by the geometry of (M, g, K ). ��
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Remark 4.3. If � is not strictly stable, but has positive kth variation, we find that the
foliation near � satisfies θ+[�s] ≥ κsk . Then a function of the form φ(s) = as−p with
large a and p = k−1

2 yields a super-solution. This super-solution can be used to prove
that |u| ≤ Cz2/(1−k) as above.

We can get even more information about the decay rate. A closer look at Eq. (4.3)
yields that the expression for J h on Cz̄ can also be written as follows:

J h = (∂2
z − L M )h + Q′(h, Cz̄ ∇h, Cz̄ ∇2h),

since

θ+
s = sL M 1 + O(s2),

γ
i j
h(x,z)∇2

i, j h = �h + Q1(h,∇h,∇2h),

and

γ
i j
h(x,z)∂i hK (∂s, ∂ j ) = S(∇h) + Q2(h,∇h),

where the differential operators ∇ and � are with respect to �. Then note that

L M h = hL M 1 −�h + 2S(∇h).

Further investigation of the structure of Q′ yields that

|Q′(h, Cz̄ ∇h, Cz̄ ∇2h)| ≤ C
(|h|2 + | Cz̄ ∇h|2 + |h|| Cz̄ ∇2h| + | Cz̄ ∇h|2| Cz̄ ∇2h|),

so that in view of the differential Harnack estimate | Cz̄ ∇h| ≤ c|h| for positive solutions
of linear elliptic equations we have that in fact

|Q′(h, Cz̄ ∇h, Cz̄ ∇2h)| ≤ c|h|(|h| + | Cz̄ ∇h| + | Cz̄ ∇2h|),

provided |h| ≤ C . By projecting the equation J h = 0 to the one-dimensional eigen-
space of L M it is now a somewhat standard ODE argument to show the following result.

Theorem 4.4. Under the assumptions of Theorem 4.2 there are no solutions h : � ×
[0,∞) → R to the equation

J h = 0 (4.4)

with decay

|h(p, z)| + | Cz̄ ∇h(p, z)| + | Cz̄ ∇h(p, z)| ≤ C exp(−δz)

such that δ >
√
λ and h > 0.
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Proof. Assume that h > 0 is such a solution. We derive a contradiction as follows. Let λ
be the principal eigenvalue and φ be the corresponding eigenfunction of L M as before.
Let L∗

M be the (formal) adjoint of L M on L2(�) and denote by φ∗ > 0 its principal
eigenfunction, normalized such that

∫

�
φφ∗ dµ = 1. Then the operator

Pu =
(∫

�

φ∗u dµ

)

φ

is a projection onto the eigenspace spanned by φ and moreover commutes with L M .
We interpret h(z) as a family of functions on �, that is h(z)(p) = h(p, z) for p ∈ �.
Choose α(z) such that

Ph(z) = α(z)φ,

and β(z) accordingly,

β(z)φ = P
(

Q′(h(·, z), Cz̄ ∇h(·, z), Cz̄ ∇2h(·, p))
)

.

Then Eq. (4.4) and the fact that P commutes with L M and ∂z imply

α′′(z)− λα(z) = β(z).

Using φ∗ > 0 and h > 0 yields α(z) > 0 and we can furthermore estimate that

|β(z)| ≤ c
∫

�

φ∗|h(p, z)|(|h(p, z)| + |∇h(p, z)| + |∇2h(p, z)|) dµ

≤ c exp(−δz)
∫

�

φ∗|h(p, z)| dµ

≤ c exp(−δz)α(z).

Thus, we conclude that on [z̃, 0) the function α > 0 satisfies a differential inequality of
the form

α′′(z)− λα ≤ εα,

where ε > 0 can be chosen arbitrarily small by choosing z̃ large enough. If
√
λ + ε < δ

this ODE has no solutions with decay exp(−δz) other than the trivial solution. Thus
α ≡ 0 and we arrive at the desired contradiction. ��

Acknowledgement. The author thanks the Mittag-Leffler-Institute, Djursholm, Sweden for hospitality and
support during the program Geometry, Analysis, and General Relativity in Fall 2008.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.



72 J. Metzger

References

[AM07] Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math.
Phys. 290, 941–972 (2009)

[AMS05] Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys.
Rev. Lett. 95, 111102 (2005)

[AMS07] Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and exis-
tence of marginally outer trapped tubes. http://arxiv.org/abs/0704.2889v2[gr-qc], 2007

[Bra01] Bray, H.L.: Proof of the riemannian penrose inequality using the positive mass theorem.
J. Diff. Geom. 59(2), 177–267 (2001)

[HI01] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the riemannian penrose inequal-
ity. J. Diff. Geom. 59(3), 353–437 (2001)

[Jan78] Jang, P.S.: On the positivity of energy in general relativity. J. Math. Phys. 19, 1152–1155
(1978)

[Khu09] Khuri, M.: A penrose-like inequality for general initial data sets. Commun. Math. Phys.
290(2), 779–788 (2009)

[MÓM04] Malec, E., Murchadha, N.Ó.: The Jang equation, apparent horizons and the Penrose inequal-
ity. Class. Quant. Grav. 21(24), 5777–5787 (2004)

[Sch04] Schoen, R.: Talk Given at the Miami Waves Conference, January 2004
[SY81] Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2),

231–260 (1981)

Communicated by P. T. Chruściel
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