3,523 research outputs found

    Boosting clinical performance: The impact of enhanced final year placements.

    Get PDF
    BACKGROUND: This study follows on from a study that investigated how to develop effective final year medical student assistantship placements, using multidisciplinary clinical teams in planning and delivery. AIMS: This study assessed the effects on objective structured clinical examination (OSCE) performance of the in-course enhanced "super-assistantship" placement introduced to a randomly selected sample of 2013-14 final year medical students at Leeds medical school. METHODS: Quantitative data analysis was used to compare the global grades of OSCE stations between students who undertook this placement against those who did not. RESULTS: There was a small overall improvement in the "super-assistantship" student scores across the whole assessment (effect size = 0.085). "Pre-op Capacity", "Admissions Prescribing" and "Hip Pain" stations had small-medium effect sizes (0.226, 0.215, and 0.214) in favor of the intervention group. Other stations had small effect sizes (0.107-0.191), mostly in favor of the intervention group. CONCLUSIONS: The "super-assistantship" experience characterized by increasing student responsibility on placement can help to improve competence and confidence in clinical decision-making "in a simulated environment". The clinical environment and multidisciplinary team must be ready and supported to provide these opportunities effectively. Further in-course opportunities for increasing final year student responsibility should be developed

    Gravitational Radiation From Globular Clusters

    Get PDF
    Space-based gravitational wave detectors will have the ability to observe continuous low frequency gravitational radiation from binary star systems. They can determine the direction to continuous sources with an angular resolution approaching tens of arcminutes. This resolution should be sufficient to identify binary sources as members of some nearby globular clusters. Thus, gravitational radiation can be used to determine the population of hard binaries in globular clusters. For particularly hard binaries, the orbital period may change as a result of gravitational wave emission. If one of these binaries can be identified with a globular cluster, then the distance to that cluster can be determined. Thus, gravitational radiation may provide reddening-independent distance measurements to globular clusters.Comment: 26 pages, 1 figure, LaTeX, uses aasms4.sty, submitted to Ap.

    X-Ray Spectroscopy of the Low-Mass X-ray Binaries 2S 0918-549 and 4U1543-624: Evidence for Neon-Rich Degenerate Donors

    Full text link
    We present high-resolution spectroscopy of the neutron-star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory and the Reflection Grating Spectrometer onboard XMM-Newton. Previous low-resolution spectra of both sources showed a broad line-like feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra spectra. The Chandra spectra are each well fit by an absorbed power-law + blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar-medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fit by an absorbed power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.Comment: 11 pages, 5 figures, major revisions including addition of XMM spectral analysis, accepted for publication in the Astrophysical Journal, vol. 59

    Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique

    Full text link
    We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.Comment: 5 pages, 4 figures. Corrected background information in the introduction, results and discussion unchange

    Ultracompact X-ray Binaries in Globular Clusters: Variability of the Optical Counterpart of X1832-330 in NGC 6652

    Get PDF
    Evidence is emerging that the luminous X-ray sources in the cores of globular clusters may often consist of, or perhaps even as a class be dominated by, ultracompact (P < 1 hr) binary stars. To the two such systems already known, in NGC 6624 and NGC 6712, we now add evidence for two more. We detect large amplitude variability in the candidate optical counterpart for the X-ray source in the core of NGC 6652. Although the available observations are relatively brief, the existing Hubble Space Telescope data indicate a strong 43.6 min periodic modulation of the visible flux of semi-amplitude 30%. Further, although the orbital period of the source in NGC 1851 is not yet explicitly measured, we demonstrate that previous correlations of optical luminosity with X-ray luminosity and accretion disk size, strengthened by recent data, strongly imply that the period of that system is also less than 1 hr. Thus currently there is evidence that 4 of the 7 globular cluster X-ray sources with constrained periods are ultracompact, a fraction far greater than that found in X-ray binaries the field.Comment: 10 pages including 2 figures and 1 table. Accepted for publication in The Astrophysical Journal Letter

    Time-Resolved Ultraviolet Observations of the Globular Cluster X-ray Source in NGC 6624: The Shortest Known Period Binary System

    Full text link
    Using the Faint Object Spectrograph (FOS) aboard the Hubble Space Telescope, we have obtained the first time-resolved spectra of the King et al. ultraviolet-bright counterpart to the 11-minute binary X-ray source in the core of the globular cluster NGC 6624. This object cannot be readily observed in the visible, even from HST, due to a much brighter star superposed <0.1'' distant. Our FOS data show a highly statistically significant UV flux modulation with a period of 11.46+-0.04 min, very similar to the 685 sec period of the known X-ray modulation, definitively confirming the association between the King et al. UV counterpart and the intense X-ray source. The UV amplitude is very large compared with the observed X-ray oscillations: X-ray variations are generally reported as 2-3% peak-to-peak, whereas our data show an amplitude of about 16% in the 126-251 nm range. A model for the system by Arons & King predicts periodic UV fluctuations in this shortest-known period binary system, due to the cyclically changing aspect of the X-ray heated face of the secondary star (perhaps a very low mass helium degenerate). However, prior to our observations, this predicted modulation has not been detected. Employing the Arons & King formalism, which invokes a number of different physical assumptions, we infer a system orbital inclination 35deg<i<50 deg. Amongst the three best-studied UV/optical counterparts to the intense globular cluster X-ray sources, two are now thought to consist of exotic double-degenerate ultrashort period binary systems.Comment: 10 pages including 2 figures in Latex (AASTeX 4.0). Accepted for publication in vol. 482 (1997 June 10 issue) of The Astrophysical Journal (Letters

    The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin

    Full text link
    The ABC effect -- a long-standing puzzle in double-pionic fusion -- has been reexamined by the first exclusive and kinematically complete measurements of solid statistics for the fusion reactions pndπ0π0pn \to d\pi^0\pi^0, pd3pd \to ^3Heππ\pi\pi and dd4dd \to ^4Heππ\pi\pi using the WASA detector, first at CELSIUS and recently at COSY -- the latter with a statistics increased by another two orders of magnitude. In all cases we observe a huge low-mass enhancement in the ππ\pi\pi-invariant mass accompanied by a pronounced ΔΔ\Delta\Delta excitation. For the most basic fusion reaction, the pndπ0π0pn \to d\pi^0\pi^0 reaction, we observe in addition a very pronounced resonance-like energy dependence in the total cross section with a maximum 90 MeV below the ΔΔ\Delta\Delta mass and a width of only 50 MeV, which is five times smaller than expected from a conventional tt-channel ΔΔ\Delta\Delta excitation. This reveals the ABC effect to be the consequence of a s-channel resonance with the formfactor of this dibaryonic state being reflected in the low-mass enhancement of the ππ\pi\pi-invariant mass. From the fusion reactions to 3^3He and 4^4He we learn that this resonance is robust enough to survive even in nuclei.Comment: conference proceedings PANIC 0

    Adaptive NLMS Partial Crosstalk Cancellation in Digital Subscriber Lines

    Get PDF
    Crosstalk is a major limitation to achieving high data-rates in next generation VDSL systems. Whilst crosstalk cancellation can be applied to completely remove crosstalk, it is often too complex for application in typical VDSL binders, which can contain up to hundreds of lines. A practical alternative, known as partial cancellation limits the cancellation to crosstalkers that cause severe interference to the other lines within the binder. In real VDSL systems, the crosstalk environment changes rapidly as new lines come online; old lines go offline, and the crosstalk channels change with fluctuations in ambient temperature. Therefore, adaptive crosstalk cancellers are often required. In this paper, we propose a new detection guided adaptive NLMS method for Adaptive Partial Crosstalk Cancellation that detects significant crosstalkers and tracks variations in their crosstalk channels. This exploits the sparse and column-wise diagonal dominant properties of the crosstalk channel matrix and leads to fast convergence, accurate crosstalk channel tracking, with a lower update complexity. The end result is an adaptive Partial Crosstalk Cancellation algorithm that has lower run-time complexity than prior state-of-the-art whilst yielding comparatively high data-rates and reliable service

    Regression of murine lung tumors by the let-7 microRNA.

    Get PDF
    MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment

    Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    Get PDF
    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm
    corecore