Using the Faint Object Spectrograph (FOS) aboard the Hubble Space Telescope,
we have obtained the first time-resolved spectra of the King et al.
ultraviolet-bright counterpart to the 11-minute binary X-ray source in the core
of the globular cluster NGC 6624. This object cannot be readily observed in the
visible, even from HST, due to a much brighter star superposed <0.1'' distant.
Our FOS data show a highly statistically significant UV flux modulation with a
period of 11.46+-0.04 min, very similar to the 685 sec period of the known
X-ray modulation, definitively confirming the association between the King et
al. UV counterpart and the intense X-ray source. The UV amplitude is very large
compared with the observed X-ray oscillations: X-ray variations are generally
reported as 2-3% peak-to-peak, whereas our data show an amplitude of about 16%
in the 126-251 nm range. A model for the system by Arons & King predicts
periodic UV fluctuations in this shortest-known period binary system, due to
the cyclically changing aspect of the X-ray heated face of the secondary star
(perhaps a very low mass helium degenerate). However, prior to our
observations, this predicted modulation has not been detected. Employing the
Arons & King formalism, which invokes a number of different physical
assumptions, we infer a system orbital inclination 35deg<i<50 deg. Amongst the
three best-studied UV/optical counterparts to the intense globular cluster
X-ray sources, two are now thought to consist of exotic double-degenerate
ultrashort period binary systems.Comment: 10 pages including 2 figures in Latex (AASTeX 4.0). Accepted for
publication in vol. 482 (1997 June 10 issue) of The Astrophysical Journal
(Letters